期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tire Dynamics Modeling Method Based on Rapid Test Method 被引量:1
1
作者 Dang Lu Lei Lu +2 位作者 Haidong Wu Wei Wang Manyi Lv 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第6期228-237,共10页
Combined with the tire dynamics theoretical model,a rapid test method to obtain tire lateral and longitudinal both steady-state and transient characteristics only based on the tire quasi-steady-state test results is p... Combined with the tire dynamics theoretical model,a rapid test method to obtain tire lateral and longitudinal both steady-state and transient characteristics only based on the tire quasi-steady-state test results is proposed.For steady state data extraction,the test time of the rapid test method is half that of the conventional test method.For transient tire characteristics the rapid test method omits the traditional tire test totally.At the mean time the accuracy of the two method is much closed.The rapid test method is explained theoretically and the test process is designed.The key parameters of tire are extracted and the comparison is made between rapid test and traditional test method.The result show that the identification accuracy based on the rapid test method is almost equal to the accuracy of the conventional one.Then,the heat generated during the rapid test method and that generated during the conventional test are calculated separately.The comparison shows that the heat generated during the rapid test is much smaller than the heat generated during the conventional test process.This benefits to the reduction of tire wear and the consistency of test results.Finally,it can be concluded that the fast test method can efficiently,accurately and energy-efficiently measure the steady-state and transient characteristics of the tire. 展开更多
关键词 tire dynamics modeling Rapid test method tire steady-state and transient characteristics Identificationof tire characteristics parameterg
下载PDF
Road Identification for Anti-Lock Brake Systems Equipped with Only Wheel Speed Sensors
2
作者 吴卫东 尹用山 《Tsinghua Science and Technology》 SCIE EI CAS 2001年第4期383-385,共3页
Anti lock brake systems (ABS) are now widely used on motor vehicles. To reduce product cost and to use currently available technologies, standard ABS uses only wheel speed sensors to detect wheel angular velocities... Anti lock brake systems (ABS) are now widely used on motor vehicles. To reduce product cost and to use currently available technologies, standard ABS uses only wheel speed sensors to detect wheel angular velocities, which is not enough to directly obtain wheel slip ratios needed by the control unit, but can be used to calculate reference slip ratios with measured wheel angular velocities and the estimated vehicle speed. Therefore, the road friction coefficient, which determines the vehicle deceleration during severe braking, is an important parameter in estimating vehicle speed. This paper analyzes wheel acceleration responses in simulations of severe braking on different road surfaces and selects a pair of specific points to identify the wheel acceleration curve for each operating condition, such as road surface, pedal braking torque and wheel vertical load. It was found that the curve using the selected points for each road surface clearly differs from that of the other road surfaces. Therefore, different road surfaces can be distinguished with these selected points which represent their corresponding road surfaces. The analysis assumes that only wheel speed sensors are available as hardware and that the road cohesion condition can be determined in the initial part of the severe braking process. 展开更多
关键词 anti lock brake systems (ABS) road identification wheel angular acceleration tire characteristics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部