Due to the limited self healing capacity of human cartilage,the repair of defects gives rise to a challenging clinical problem.Cartilage tissue engineering provides a new method to solve cartilage repair.However,the s...Due to the limited self healing capacity of human cartilage,the repair of defects gives rise to a challenging clinical problem.Cartilage tissue engineering provides a new method to solve cartilage repair.However,the search for a suitable biological vector material has long been the focus of research interest in this regard.In this paper,the present situation of cartilage tissue engineering vector materials is reviewed.展开更多
Tissue-engineering bone with porous β-tricalcium phosphate (β-TCP) ceramic and autologous bone marrow mesenchymal stem cells (MSC) was constructed and the effect of this composite on healing of segmental bone defect...Tissue-engineering bone with porous β-tricalcium phosphate (β-TCP) ceramic and autologous bone marrow mesenchymal stem cells (MSC) was constructed and the effect of this composite on healing of segmental bone defects was investigated. 10-15 ml bone marrow aspirates were harvested from the iliac crest of sheep, and enriched for MSC by density gradient centrifugation over a Percoll cushion (1.073 g/ml). After cultured and proliferated, tissue-engineering bones were constructed with these cells seeded onto porous β-TCP, and then the constructs were implanted in 8 sheep left metatarsus defect (25 mm in length) as experimental group. Porous β-TCP only were implanted to bridge same size and position defects in 8 sheep as control group, and 25 mm segmental bone defects of left metatarsus were left empty in 4 sheep as blank group. Sheep were sacrificed on the 6th, 12th, and 24th week postoperatively and the implants samples were examined by radiograph, histology, and biomechanical test. The 4 sheep in blank group were sacrificed on the 24th week postoperatively. The results showed that new bone tissues were observed either radiographic or histologically at the defects of experimental group as early as 6th week postoperatively, but not in control group, and osteoid tissue, woven bone and lamellar bone occurred earlier than in control group in which the bone defects were repaired in “creep substitution” way, because of the new bone formed in direct manner without progression through a cartilaginous intermediate. At the 24th week, radiographs and biomechanical test revealed an almost complete repair of the defect of experimental group, only partly in control group. The bone defects in blank group were non-healing at the 24th week. It was concluded that engineering bones constructed with porous β-TCP and autologous MSC were capable of repairing segmental bone defects in sheep metatarsus beyond “creep substitution” way and making it healed earlier. Porous β-TCP being constituted with autologous MSC may be a good option in healing critical segmental bone defects in clinical practice and provide insight for future clinical repair of segmental defect.展开更多
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds bas...Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.展开更多
Acute pancreatitis is a common systemic inflammatory disease, manifested by a spectrum of severity, ranging from mild in the majority of patients to severe acute pancreatitis. Patients with severe acute pancreatitis s...Acute pancreatitis is a common systemic inflammatory disease, manifested by a spectrum of severity, ranging from mild in the majority of patients to severe acute pancreatitis. Patients with severe acute pancreatitis suffer from severe local and systemic complications and organ failure, leading to a poor prognosis. The early recognition of the severe condition is important to improve prognosis. Obesity has risen in tandem with an increase in the severity of acute pancreatitis in recent years. Studies have revealed that adipose tissue, particularly visceral adipose tissue is associated with the prognosis of acute pancreatitis. This review discussed the role of visceral adipose tissue in obese patients with acute pancreatitis and explored the possible mechanism involved.展开更多
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ...Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.展开更多
Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising techniqu...Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.展开更多
AIM: To assess acellular ostrich corneal matrix used as a scaffold to reconstruct a damaged cornea. METHODS: A hypertonic saline solution combined with a digestion method was used to decellularize the ostrich cornea...AIM: To assess acellular ostrich corneal matrix used as a scaffold to reconstruct a damaged cornea. METHODS: A hypertonic saline solution combined with a digestion method was used to decellularize the ostrich cornea. The microstructure of the acellular corneal matrix was observed by transmission electron microscopy (TEM) and hematoxylin and eosin (H&E) staining. The mechanical properties were detected by a rheometer and a tension machine. The acellular corneal matrix was also transplanted into a rabbit cornea and cytokeratin 3 was used to check the immune phenotype, RESULTS: The microstructure and mechanical properties of the ostrich cornea were well preserved after the decellularization process, in vitro, the methyl thiazolyl tetrazoUum results revealed that extracts of the acellular ostrich corneas (AOCs) had no inhibitory effects on the proliferation of the corneal epithelial or endothelial cells or on the keratocytes, The rabbit lamellar keratoplasty showed that the transplanted AOCs were transparent and completely incorporated into the host cornea while corneal turbidity and graft dissolution occurred in the acellular porcine cornea (APC) transplantation, The phenotype of the reconstructed cornea was similar to a normal rabbit cornea with a high expression of cytokeratin 3 in the superficial epithelial cell layer, CONCLUSION: We first used AOCs as scaffolds to reconstruct damaged corneas. Compared with porcine corneas, the anatomical structures of ostrich corneas are closer to those of human corneas. In accordance with the principle that structure determines function, a xenograft lamellar keratoplasty also confirmed that the AOC transplantation generated a superior outcome compared to that of the APC graft.展开更多
With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the...With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the repair of peripheral nerve injuries, in particular multiple injuries and largegap defects, must be chosen carefully. Various methods and materials for protecting the healthy tissue and repairing peripheral nerve injuries have been described, and each method or material has advantages and disadvantages. Recently, a large amount of research has been focused on tissue-engineered materials for the repair of peripheral nerve injuries. Using the keywords "peripheral nerve injury", "autotransplant", "nerve graft", and "biomaterial", we retrieved publications using tissue-engineered materials for the repair of peripheral nerve injuries appearing in the Web of Science from 2010 to 2014. The country with the most total publications was the USA. The institutions that were the most productive in this field include Hannover Medical School (Germany), Washington University (USA), and Nantong University (China). The total number of publications using tissue-engineered materials for the repair of peripheral nerve injuries grad- ually increased over time, as did the number of Chinese publications, suggesting that China has made many scientific contributions to this field of research.展开更多
Aim To evaluate the effects of maxillary sinus floor elevation by a tissue-engineered bone complex of β-tricalcium phosphate (β-TCP) and autologous osteoblasts in dogs. Methodology Autologous osteoblasts from adul...Aim To evaluate the effects of maxillary sinus floor elevation by a tissue-engineered bone complex of β-tricalcium phosphate (β-TCP) and autologous osteoblasts in dogs. Methodology Autologous osteoblasts from adult Beagle dogs were cultured in vitro. They were further combined with β-TCP to construct the tissue-engineered bone complex. 12 cases of maxillary sinus floor elevation surgery were made bilaterally in 6 animals and randomly repaired with the following 3 groups of materials: Group A (osteoblasts/D-TCP); Group B (β-TCP); Group C (autogenous bone) (n=4 per group). A polychrome sequential fluorescent labeling was performed post-operatively and the animals were sacrificed 24 weeks after operation for histological observation.Results Our results showed that autologous osteoblasts were successfully expanded and the osteoblastic phenol- types were confirmed by ALP and Alizarin red staining. The cells could attach and proliferate well on the surface of the ~3-TCP scaffold. The fluorescent and histological observation showed that the tissue-engineered bone complex had an earlier mineralization and more bone formation inside the scaffold than β-TCP along or even autologous bone. It had also maximally maintained the elevated sinus height than both control groups. Conclusion Porous 13-TCP has served as a good scaffold for autologous osteoblasts seeding. The tissue-engineered bone complex with β-TCP and autologous osteoblasts might be a better alternative to autologous bone for the clinical edentulous maxillary sinus augmentation.展开更多
Damage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibrobla...Damage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibroblast conduit (EFC), and autograft in a 10-mm tibial nerve gap. ENCs were fabricated utilizing primary fibroblasts and the nerve cells of rats on embryonic day 15 (E 15). EFCs were fabricated utilizing primary fi- broblasts only. Following a 12-week recovery, nerve repair was assessed by measuring contractile properties in the medial gastrocnemius muscle, distal motor nerve conduction velocity in the lateral gastrocnemius, and histology of muscle and nerve. The autografts, ENCs and EFCs reestablished 96%, 87% and 84% of native distal motor nerve conduction velocity in the lateral gastrocnemius, 100%, 44% and 44% of native specific force of medical gastrocnemius, and 63%, 61% and 67% of native medial gastrocnemius mass, re- spectively. Histology of the repaired nerve revealed large axons in the autograft, larger but fewer axons in the ENC repair, and many smaller axons in the EFC repair. Muscle histology revealed similar muscle fiber cross-sectional areas among autograft, ENC and EFC repairs. In conclusion, both ENCs and EFCs promot- ed nerve regeneration in a 10-mm tibial nerve gap repair, suggesting that the El5 rat nerve cells may not be necessary for nerve regeneration, and EFC alone can suffice for peripheral nerve injury repair.展开更多
Adequate vascularization is a critical determinant for the successful construction and clinical implementation of complex organotypic tissue models. Currently, low cell and vessel density and insufficient vascular mat...Adequate vascularization is a critical determinant for the successful construction and clinical implementation of complex organotypic tissue models. Currently, low cell and vessel density and insufficient vascular maturation make vascularized organotypic tissue construction difficult,greatly limiting its use in tissue engineering and regenerative medicine. To address these limitations, recent studies have adopted pre-vascularized microtissue assembly for the rapid generation of functional tissue analogs with dense vascular networks and high cell density. In this article, we summarize the development of module assembly-based vascularized organotypic tissue construction and its application in tissue repair and regeneration, organ-scale tissue biomanufacturing, as well as advanced tissue modeling.展开更多
The aim of this study was to evaluate the efficacy of mosaicplasty with tissue-engineered cartilage for the treatment of osteochondral defects in a pig model with advanced MR technique. Eight adolescent miniature pigs...The aim of this study was to evaluate the efficacy of mosaicplasty with tissue-engineered cartilage for the treatment of osteochondral defects in a pig model with advanced MR technique. Eight adolescent miniature pigs were used. The right knee underwent mosaicplasty with tissue-engineered cartilage for treatment of focal osteochondral defects, while the left knee was repaired via single mosaicplasty as controls. At 6, 12, 18 and 26 weeks after surgery, repair tissue was evaluated by magnetic resonance imaging (MRI) with the cartilage repair tissue (MOCART) scoring system and T2 mapping. Then, the results of MRI for 26 weeks were compared with findings of macroscopic and histologic studies. The MOCART scores showed that the repaired tissue of the tissue-engineered cartilage group was statistically better than that of controls (P 〈 0.001). A significant correlation was found between macroscopic and MOCART scores (P 〈 0.001). Comparable mean T2 values were found between adjacent cartilage and repair tissue in the experimental group (P 〉 0.05). For zonal T2 value evaluation, there were no significant zonal T2 differences for repair tissue in controls (P 〉 0.05). For the experimental group, zonal T2 variation was found in repair tissue (P 〈 0.05). MRI, macroscopy and histology showed better repair results and bony incorporation in mosaicplasty with the tissue-engi- neered cartilage group than those of the single mosaicplasty group. Mosaicplasty with the tissue-engineered cartilage is a promising approach to repair osteochodndral defects. Morphological MRI and T2 mapping provide a non-invasive method for monitoring the maturation and integration of cartilage repair tissue in vivo.展开更多
Acellular nerve allografts can help preserve normal nerve structure and extracellular matrix composition. These allografts have low immunogenicity and are more readily available than autologous nerves for the repair o...Acellular nerve allografts can help preserve normal nerve structure and extracellular matrix composition. These allografts have low immunogenicity and are more readily available than autologous nerves for the repair of long-segment peripheral nerve defects. In this study, we repaired a 40-mm ulnar nerve defect in rhesus monkeys with tissue-engineered peripheral nerve, and compared the outcome with that of autograft. The graft was prepared using a chemical extract from adult rhesus monkeys and seeded with allogeneic Schwann cells. Pathomo- rphology, electromyogram and immunohistochemistry findings revealed the absence of palmar erosion or ulcers, and that the morphology and elasticity of the hypothenar eminence were normal 5 months postoperatively. There were no significant differences in the mean peak compound muscle action potential, the mean nerve conduction velocity, or the number of neurofilaments between the experimental and control groups. However, outcome was significantly better in the experimental group than in the blank group. These findings suggest that chemically extracted allogeneic nerve seeded with autologous Schwann cells can repair 40-mm ulnar nerve defects in the rhesus monkey. The outcomes are similar to those obtained with autologous nerve graft.展开更多
Aging is one of the most significant health challenges worldwide and is a primary cause of chronic diseases and physiological decline.Among the myriad changes that occur with aging,alterations in adipose tissue distri...Aging is one of the most significant health challenges worldwide and is a primary cause of chronic diseases and physiological decline.Among the myriad changes that occur with aging,alterations in adipose tissue distribution and function have gained considerable attention because of their profound impact on metabolic health and overall well-being.Subcutaneous adipose tissue(SAT)and visceral adipose tissue(VAT)are the two major depots of white adipose tissue,each with distinct roles in metabolism and health.Understanding the characteristics and underlying mechanisms of SAT and VAT is crucial for elucidating the aging process and developing strategies to promote healthy aging.This review focuses on delineating and analyzing the characteristics and intrinsic mechanisms underlying the aging of subcutaneous and visceral adipose tissue during the aging process,which can contribute to a better understanding of the aging process and enhance healthy aging.展开更多
The repair of bone tissue damage is a complex process that is well-orchestrated in time and space,a focus and difficulty in orthopedic treatment.In recent years,the success of mesenchymal stem cells(MSCs)-mediated bon...The repair of bone tissue damage is a complex process that is well-orchestrated in time and space,a focus and difficulty in orthopedic treatment.In recent years,the success of mesenchymal stem cells(MSCs)-mediated bone repair in clinical trials of large-area bone defects and bone necrosis has made it a candidate in bone tissue repair engineering and regenerative medicine.MSCs are closely related to macrophages.On one hand,MSCs regulate the immune regulatory function by influencing macrophages proliferation,infiltration,and phenotype polarization,while also affecting the osteoclasts differentiation of macrophages.On the other hand,macrophages activate MSCs and mediate the multilineage differentiation of MSCs by regulating the immune microenvironment.The cross-talk between MSCs and macrophages plays a crucial role in regulating the immune system and in promoting tissue regeneration.Making full use of the relationship between MSCs and macrophages will enhance the efficacy of MSCs therapy in bone tissue repair,and will also provide a reference for further application of MSCs in other diseases.展开更多
In this paper, the main goal is to prepare silk fibroin nano-fiber, which is used for regenerated tissue applications. Silk scaffold nano-fibers made by electro-spinning technology can be used in regenerated tissue ap...In this paper, the main goal is to prepare silk fibroin nano-fiber, which is used for regenerated tissue applications. Silk scaffold nano-fibers made by electro-spinning technology can be used in regenerated tissue applications. The purpose of the research is to prepare a silk-fibroin nano-fiber solution for potential applications in tissue engineering. Using a degumming process, pure silk fibroin protein is extracted from silk cocoons. The protein solution for fibroin is purified, and the protein content is determined. The precise chemical composition, exact temperature, time, voltage, distance, ratio, and humidity all have a huge impact on degumming, solubility, and electro-spinning nano-fibers. The SEM investigates the morphology of silk fibroin nano-fibres at different magnifications. It also reveals the surface condition, fiber orientation, and fiber thickness of the silk fibroin nano-fiber. The results show that regenerated silk fibroin and nano-fiber can be used in silk fibroin scaffolds for various tissue engineering applications.展开更多
New neurons are integrated into the circuitry of the olfactory bulb throughout the lifespan in the mamma- lian brain--including in humans. These new neurons are born in the subventricular zone and subsequently mature ...New neurons are integrated into the circuitry of the olfactory bulb throughout the lifespan in the mamma- lian brain--including in humans. These new neurons are born in the subventricular zone and subsequently mature as they are guided over long distances via the rostral migratory stream through mechanisms we are only just beginning to understand. Regeneration after brain injury is very limited, and although some neuroblasts from the rostral migratory stream will leave the path and migrate toward cortical lesion sites, this neuronal replacement is generally not sustained and therefore does not provide enough new neurons to alleviate functional deficits. Using newly discovered microtissue engineering techniques, we have built the first self-contained, implantable constructs that mimic the architecture and function of the rostral migratory stream. This engineered microtissue emulates the dense cord-like bundles of astrocytic somata and processes that are the hallmark anatomical feature of the glial tube. As such, our living microtissue-en- gineered rostral migratory stream can serve as an in vitro test bed for unlocking the secrets of neuroblast migration and maturation, and may potentially serve as a living transplantable construct derived from a patient's own cells that can redirect their own neuroblasts into lesion sites for sustained neuronal replace- ment following brain injury or neurodegenerative disease. In this paper, we summarize the development of fabrication methods for this microtissue-engineered rostral migratory stream and provide proof-of-princi- ple evidence that it promotes and directs migration of immature neurons.展开更多
Background: Endothelial and smooth muscle cells were used as seeding cells and heterogeneous acellularized matrix was used as scaffold to construct the tissue-engineered graft. Methods: A 2 weeks piglet was selected...Background: Endothelial and smooth muscle cells were used as seeding cells and heterogeneous acellularized matrix was used as scaffold to construct the tissue-engineered graft. Methods: A 2 weeks piglet was selected as a donor of seeding cells. Two-centimetre length of common carotid artery was dissected. Endothelial cells and smooth muscle cells were harvested by trypsin and collagenase digestion respectively. The isolated cells were cultured and expanded using routine cell culture technique. An adult sheep was used as a donor of acellularized matrix. The thoracic aorta was harvested and processed by a multi-step decellularizing technique to remove the original cells and preserve the elastic and collagen fibers. The cultured smooth muscle cells and endothelial cells were then seeded to the acellularized matrix and incubated in vitro for another 2 weeks. The cell seeded graft was then transplanted to the cell-donated piglet to substitute part of the native pulmonary artery. Results: The cultured cells from piglet were characterized as endothelial cells by the presence of specific antigens vWF and CD31, and smooth muscle cells by the presence of specific antigen a-actin on the cell surface respectively with immunohistochemical technique. After decellularizing processing for the thoracic aorta from sheep, all the cellular components were extracted and elastic and collagen fibers kept their original morphology and structure. The maximal load of acellular matrix was decreased and 20% lower than that of untreated thoracic aorta, but the maximal tensions between them were not different statistically and they had similar load-tension curves. Three months after transplantation, the animal was sacrificed and the graft was removed for observation. The results showed that the inner surfaces of the graft were smooth, without thrombosis and calcification. Under microscopy, a great number of growing cells could be seen and elastic and collagen fibers were abundant. Conclusion: Cultured self-derived endothelial and smooth muscle cells could be used as seeding cells and heterogeneous acellularized matrix could be used as scaffold in constructing tissue-engineered graft.展开更多
Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have bee...Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have been recognized for their biocompatibility and biodegradability.However,their susceptibility to rapid corrosion and degradation has garnered notable research interest in bone tissue engineering(BTE),particularly in the development of Mg-incorporated biocomposite scaffolds.These scaffolds gradually release Mg2+,which enhances immunomodulation,osteogenesis,and angiogenesis,thus facilitating effective bone regeneration.This review presents myriad fabrication techniques used to create Mg-incorporated biocomposite scaffolds,including electrospinning,three-dimensional printing,and sol-gel synthesis.Despite these advancements,the application of Mg-incorporated biocomposite scaffolds faces challenges such as controlling the degradation rate of Mg and ensuring mechanical stability.These limitations highlight the necessity for ongoing research aimed at refining fabrication techniques to better regulate the physicochemical and osteogenic properties of scaffolds.This review provides insights into the potential of Mg-incorporated biocomposite scaffolds for BTE and the challenges that need to be addressed for their successful translation into clinical applications.展开更多
Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocy...Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocytes-associated self-repairing process in damaged tissue,we present novel biomimetic erythrocyte-like microparticles(ELMPs).These ELMPs,which are composed of extracellular matrix-like hybrid hydrogels and the functional additives of black phosphorus,hemoglobin,and growth factors(GFs),are generated by using a microfluidic electrospray.As the resultant ELMPs have the capacity for oxygen delivery and near-infrared-responsive release of both GFs and oxygen,they would have excellent biocompatibility and multifunctional performance when serving as microscaffolds for cell adhesion,stimulating angiogenesis,and adjusting the release profile of cargoes.Based on these features,we demonstrate that the ELMPs can stably overlap to fill a wound and realize controllable cargo release to achieve the desired curative effect of tissue regeneration.Thus,we consider our biomimetic ELMPs with discoid morphology and cargo-delivery capacity to be ideal for tissue engineering.展开更多
文摘Due to the limited self healing capacity of human cartilage,the repair of defects gives rise to a challenging clinical problem.Cartilage tissue engineering provides a new method to solve cartilage repair.However,the search for a suitable biological vector material has long been the focus of research interest in this regard.In this paper,the present situation of cartilage tissue engineering vector materials is reviewed.
基金This project was supported by national high technology re search and development program of China ( 863 Program,2001AA216031), key technologies research and developmentprogram of Beijing (H020920050031).
文摘Tissue-engineering bone with porous β-tricalcium phosphate (β-TCP) ceramic and autologous bone marrow mesenchymal stem cells (MSC) was constructed and the effect of this composite on healing of segmental bone defects was investigated. 10-15 ml bone marrow aspirates were harvested from the iliac crest of sheep, and enriched for MSC by density gradient centrifugation over a Percoll cushion (1.073 g/ml). After cultured and proliferated, tissue-engineering bones were constructed with these cells seeded onto porous β-TCP, and then the constructs were implanted in 8 sheep left metatarsus defect (25 mm in length) as experimental group. Porous β-TCP only were implanted to bridge same size and position defects in 8 sheep as control group, and 25 mm segmental bone defects of left metatarsus were left empty in 4 sheep as blank group. Sheep were sacrificed on the 6th, 12th, and 24th week postoperatively and the implants samples were examined by radiograph, histology, and biomechanical test. The 4 sheep in blank group were sacrificed on the 24th week postoperatively. The results showed that new bone tissues were observed either radiographic or histologically at the defects of experimental group as early as 6th week postoperatively, but not in control group, and osteoid tissue, woven bone and lamellar bone occurred earlier than in control group in which the bone defects were repaired in “creep substitution” way, because of the new bone formed in direct manner without progression through a cartilaginous intermediate. At the 24th week, radiographs and biomechanical test revealed an almost complete repair of the defect of experimental group, only partly in control group. The bone defects in blank group were non-healing at the 24th week. It was concluded that engineering bones constructed with porous β-TCP and autologous MSC were capable of repairing segmental bone defects in sheep metatarsus beyond “creep substitution” way and making it healed earlier. Porous β-TCP being constituted with autologous MSC may be a good option in healing critical segmental bone defects in clinical practice and provide insight for future clinical repair of segmental defect.
基金supported by the National Natural Science Foundation of China(52003113,31900950,82102334,82002313,82072444)the National Key Research&Development Program of China(2018YFC2001502,2018YFB1105705)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(2021A1515010745,2020A1515110356,2023A1515011986)the Shenzhen Fundamental Research Program(JCYJ20190808120405672)the Key Program of the National Natural Science Foundation of Zhejiang Province(LZ22C100001)the Natural Science Foundation of Shanghai(20ZR1469800)the Integration Innovation Fund of Shanghai Jiao Tong University(2021JCPT03),the Science and Technology Projects of Guangzhou City(202102020359)the Zigong Key Science and Technology Plan(2022ZCNKY07).SXC thanks the financial support under the Startup Grant of the University of Chinese Academy of Sciences(WIUCASQD2021026).HW thanks the Futian Healthcare Research Project(FTWS2022013)the financial support of China Postdoctoral Science Foundation(2021TQ0118).SL thanks the financial support of China Postdoctoral Science Foundation(2022M721490).
文摘Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.
文摘Acute pancreatitis is a common systemic inflammatory disease, manifested by a spectrum of severity, ranging from mild in the majority of patients to severe acute pancreatitis. Patients with severe acute pancreatitis suffer from severe local and systemic complications and organ failure, leading to a poor prognosis. The early recognition of the severe condition is important to improve prognosis. Obesity has risen in tandem with an increase in the severity of acute pancreatitis in recent years. Studies have revealed that adipose tissue, particularly visceral adipose tissue is associated with the prognosis of acute pancreatitis. This review discussed the role of visceral adipose tissue in obese patients with acute pancreatitis and explored the possible mechanism involved.
基金supported by the Sichuan Science and Technology Program,No.2023YFS0164 (to JC)。
文摘Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.
文摘Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.
基金Supported by National Natural Science Foundation of China(No.31200724)Key Innovation Project of Shaanxi Science and Technology Plan(No. 2012KTCQ03-11)+1 种基金Shenzhen Peacock Plan(No. KQCX20130628155525051)Projects of Basic Research of Shenzhen(No.JCYJ20120614193611639,No.JCYJ 20140509172959988)
文摘AIM: To assess acellular ostrich corneal matrix used as a scaffold to reconstruct a damaged cornea. METHODS: A hypertonic saline solution combined with a digestion method was used to decellularize the ostrich cornea. The microstructure of the acellular corneal matrix was observed by transmission electron microscopy (TEM) and hematoxylin and eosin (H&E) staining. The mechanical properties were detected by a rheometer and a tension machine. The acellular corneal matrix was also transplanted into a rabbit cornea and cytokeratin 3 was used to check the immune phenotype, RESULTS: The microstructure and mechanical properties of the ostrich cornea were well preserved after the decellularization process, in vitro, the methyl thiazolyl tetrazoUum results revealed that extracts of the acellular ostrich corneas (AOCs) had no inhibitory effects on the proliferation of the corneal epithelial or endothelial cells or on the keratocytes, The rabbit lamellar keratoplasty showed that the transplanted AOCs were transparent and completely incorporated into the host cornea while corneal turbidity and graft dissolution occurred in the acellular porcine cornea (APC) transplantation, The phenotype of the reconstructed cornea was similar to a normal rabbit cornea with a high expression of cytokeratin 3 in the superficial epithelial cell layer, CONCLUSION: We first used AOCs as scaffolds to reconstruct damaged corneas. Compared with porcine corneas, the anatomical structures of ostrich corneas are closer to those of human corneas. In accordance with the principle that structure determines function, a xenograft lamellar keratoplasty also confirmed that the AOC transplantation generated a superior outcome compared to that of the APC graft.
文摘With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the repair of peripheral nerve injuries, in particular multiple injuries and largegap defects, must be chosen carefully. Various methods and materials for protecting the healthy tissue and repairing peripheral nerve injuries have been described, and each method or material has advantages and disadvantages. Recently, a large amount of research has been focused on tissue-engineered materials for the repair of peripheral nerve injuries. Using the keywords "peripheral nerve injury", "autotransplant", "nerve graft", and "biomaterial", we retrieved publications using tissue-engineered materials for the repair of peripheral nerve injuries appearing in the Web of Science from 2010 to 2014. The country with the most total publications was the USA. The institutions that were the most productive in this field include Hannover Medical School (Germany), Washington University (USA), and Nantong University (China). The total number of publications using tissue-engineered materials for the repair of peripheral nerve injuries grad- ually increased over time, as did the number of Chinese publications, suggesting that China has made many scientific contributions to this field of research.
基金supported by National Natural Science Foundation of China 30400502,30772431Science and Technology Commission of Shanghai Municipality 07DZ22007,08410706400,08JC 141 4400,S30206,Y0203,T0202+1 种基金Shanghai Risingstar Program 05QMX1426,08QH14017Shanghai ShuGuang 07SG 19
文摘Aim To evaluate the effects of maxillary sinus floor elevation by a tissue-engineered bone complex of β-tricalcium phosphate (β-TCP) and autologous osteoblasts in dogs. Methodology Autologous osteoblasts from adult Beagle dogs were cultured in vitro. They were further combined with β-TCP to construct the tissue-engineered bone complex. 12 cases of maxillary sinus floor elevation surgery were made bilaterally in 6 animals and randomly repaired with the following 3 groups of materials: Group A (osteoblasts/D-TCP); Group B (β-TCP); Group C (autogenous bone) (n=4 per group). A polychrome sequential fluorescent labeling was performed post-operatively and the animals were sacrificed 24 weeks after operation for histological observation.Results Our results showed that autologous osteoblasts were successfully expanded and the osteoblastic phenol- types were confirmed by ALP and Alizarin red staining. The cells could attach and proliferate well on the surface of the ~3-TCP scaffold. The fluorescent and histological observation showed that the tissue-engineered bone complex had an earlier mineralization and more bone formation inside the scaffold than β-TCP along or even autologous bone. It had also maximally maintained the elevated sinus height than both control groups. Conclusion Porous 13-TCP has served as a good scaffold for autologous osteoblasts seeding. The tissue-engineered bone complex with β-TCP and autologous osteoblasts might be a better alternative to autologous bone for the clinical edentulous maxillary sinus augmentation.
基金supported by a NIH,NIAMS,NIBIB funded grant R01 AR054778-05 and gift from the Barbara and Richard Raynor Medical Foundation Award
文摘Damage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibroblast conduit (EFC), and autograft in a 10-mm tibial nerve gap. ENCs were fabricated utilizing primary fibroblasts and the nerve cells of rats on embryonic day 15 (E 15). EFCs were fabricated utilizing primary fi- broblasts only. Following a 12-week recovery, nerve repair was assessed by measuring contractile properties in the medial gastrocnemius muscle, distal motor nerve conduction velocity in the lateral gastrocnemius, and histology of muscle and nerve. The autografts, ENCs and EFCs reestablished 96%, 87% and 84% of native distal motor nerve conduction velocity in the lateral gastrocnemius, 100%, 44% and 44% of native specific force of medical gastrocnemius, and 63%, 61% and 67% of native medial gastrocnemius mass, re- spectively. Histology of the repaired nerve revealed large axons in the autograft, larger but fewer axons in the ENC repair, and many smaller axons in the EFC repair. Muscle histology revealed similar muscle fiber cross-sectional areas among autograft, ENC and EFC repairs. In conclusion, both ENCs and EFCs promot- ed nerve regeneration in a 10-mm tibial nerve gap repair, suggesting that the El5 rat nerve cells may not be necessary for nerve regeneration, and EFC alone can suffice for peripheral nerve injury repair.
文摘Adequate vascularization is a critical determinant for the successful construction and clinical implementation of complex organotypic tissue models. Currently, low cell and vessel density and insufficient vascular maturation make vascularized organotypic tissue construction difficult,greatly limiting its use in tissue engineering and regenerative medicine. To address these limitations, recent studies have adopted pre-vascularized microtissue assembly for the rapid generation of functional tissue analogs with dense vascular networks and high cell density. In this article, we summarize the development of module assembly-based vascularized organotypic tissue construction and its application in tissue repair and regeneration, organ-scale tissue biomanufacturing, as well as advanced tissue modeling.
基金supported by the National Natural Science Foundation ofChina(No.81000800)
文摘The aim of this study was to evaluate the efficacy of mosaicplasty with tissue-engineered cartilage for the treatment of osteochondral defects in a pig model with advanced MR technique. Eight adolescent miniature pigs were used. The right knee underwent mosaicplasty with tissue-engineered cartilage for treatment of focal osteochondral defects, while the left knee was repaired via single mosaicplasty as controls. At 6, 12, 18 and 26 weeks after surgery, repair tissue was evaluated by magnetic resonance imaging (MRI) with the cartilage repair tissue (MOCART) scoring system and T2 mapping. Then, the results of MRI for 26 weeks were compared with findings of macroscopic and histologic studies. The MOCART scores showed that the repaired tissue of the tissue-engineered cartilage group was statistically better than that of controls (P 〈 0.001). A significant correlation was found between macroscopic and MOCART scores (P 〈 0.001). Comparable mean T2 values were found between adjacent cartilage and repair tissue in the experimental group (P 〉 0.05). For zonal T2 value evaluation, there were no significant zonal T2 differences for repair tissue in controls (P 〉 0.05). For the experimental group, zonal T2 variation was found in repair tissue (P 〈 0.05). MRI, macroscopy and histology showed better repair results and bony incorporation in mosaicplasty with the tissue-engi- neered cartilage group than those of the single mosaicplasty group. Mosaicplasty with the tissue-engineered cartilage is a promising approach to repair osteochodndral defects. Morphological MRI and T2 mapping provide a non-invasive method for monitoring the maturation and integration of cartilage repair tissue in vivo.
基金supported by grants from the National Natural Science Foundation of China,No.30170962the Major Subject of Key Technology of Guangzhou City of China,No.2002Z1-E0031science and technology projects of Nanshan district,No.2014028
文摘Acellular nerve allografts can help preserve normal nerve structure and extracellular matrix composition. These allografts have low immunogenicity and are more readily available than autologous nerves for the repair of long-segment peripheral nerve defects. In this study, we repaired a 40-mm ulnar nerve defect in rhesus monkeys with tissue-engineered peripheral nerve, and compared the outcome with that of autograft. The graft was prepared using a chemical extract from adult rhesus monkeys and seeded with allogeneic Schwann cells. Pathomo- rphology, electromyogram and immunohistochemistry findings revealed the absence of palmar erosion or ulcers, and that the morphology and elasticity of the hypothenar eminence were normal 5 months postoperatively. There were no significant differences in the mean peak compound muscle action potential, the mean nerve conduction velocity, or the number of neurofilaments between the experimental and control groups. However, outcome was significantly better in the experimental group than in the blank group. These findings suggest that chemically extracted allogeneic nerve seeded with autologous Schwann cells can repair 40-mm ulnar nerve defects in the rhesus monkey. The outcomes are similar to those obtained with autologous nerve graft.
基金the National Natural Science Foundation of China(grant no.82272289).
文摘Aging is one of the most significant health challenges worldwide and is a primary cause of chronic diseases and physiological decline.Among the myriad changes that occur with aging,alterations in adipose tissue distribution and function have gained considerable attention because of their profound impact on metabolic health and overall well-being.Subcutaneous adipose tissue(SAT)and visceral adipose tissue(VAT)are the two major depots of white adipose tissue,each with distinct roles in metabolism and health.Understanding the characteristics and underlying mechanisms of SAT and VAT is crucial for elucidating the aging process and developing strategies to promote healthy aging.This review focuses on delineating and analyzing the characteristics and intrinsic mechanisms underlying the aging of subcutaneous and visceral adipose tissue during the aging process,which can contribute to a better understanding of the aging process and enhance healthy aging.
基金Supported by the National Key Research and Development Program of China,No.2023YFC2508806Key Research and Development Project in Henan Province,No.231111310500+4 种基金Young Elite Scientists Sponsorship Program by CAST,No.2021-QNRC2-A06Scientific Research Project of Henan Zhongyuan Medical Science and Technology Innovation and Development Foundation,No.ZYYC2023ZDYouth Science Award Project of the Provincial-Level Joint Fund for Science and Technology Research and Development Project in Henan Province,No.225200810084Special Project on Training Top Talents in Traditional Chinese Medicine in Henan Province,No.2022ZYBJ242023 Hunan University of Chinese Medicine Postgraduate Innovation Project,No.2023CX64。
文摘The repair of bone tissue damage is a complex process that is well-orchestrated in time and space,a focus and difficulty in orthopedic treatment.In recent years,the success of mesenchymal stem cells(MSCs)-mediated bone repair in clinical trials of large-area bone defects and bone necrosis has made it a candidate in bone tissue repair engineering and regenerative medicine.MSCs are closely related to macrophages.On one hand,MSCs regulate the immune regulatory function by influencing macrophages proliferation,infiltration,and phenotype polarization,while also affecting the osteoclasts differentiation of macrophages.On the other hand,macrophages activate MSCs and mediate the multilineage differentiation of MSCs by regulating the immune microenvironment.The cross-talk between MSCs and macrophages plays a crucial role in regulating the immune system and in promoting tissue regeneration.Making full use of the relationship between MSCs and macrophages will enhance the efficacy of MSCs therapy in bone tissue repair,and will also provide a reference for further application of MSCs in other diseases.
文摘In this paper, the main goal is to prepare silk fibroin nano-fiber, which is used for regenerated tissue applications. Silk scaffold nano-fibers made by electro-spinning technology can be used in regenerated tissue applications. The purpose of the research is to prepare a silk-fibroin nano-fiber solution for potential applications in tissue engineering. Using a degumming process, pure silk fibroin protein is extracted from silk cocoons. The protein solution for fibroin is purified, and the protein content is determined. The precise chemical composition, exact temperature, time, voltage, distance, ratio, and humidity all have a huge impact on degumming, solubility, and electro-spinning nano-fibers. The SEM investigates the morphology of silk fibroin nano-fibres at different magnifications. It also reveals the surface condition, fiber orientation, and fiber thickness of the silk fibroin nano-fiber. The results show that regenerated silk fibroin and nano-fiber can be used in silk fibroin scaffolds for various tissue engineering applications.
基金supported by the National Institutes of Health[U01-NS094340(Cullen),F31-NS090746(Katiyar)&F32-NS103253(O’Donnell)]University of Pennsylvania[Center for Undergraduate Research&Fellowships(Panzer)]+2 种基金Michael J.Fox Foundation[Therapeutic Pipeline Program#9998(Cullen)]Department of Veterans Affairs[RR&D Merit Review I01-RX001097(Cullen)&BLR&D Merit Review I01-BX003748(Cullen)]the U.S.Army Medical Research and Materiel Command[W81XWH-16-1-0796(Cullen)]
文摘New neurons are integrated into the circuitry of the olfactory bulb throughout the lifespan in the mamma- lian brain--including in humans. These new neurons are born in the subventricular zone and subsequently mature as they are guided over long distances via the rostral migratory stream through mechanisms we are only just beginning to understand. Regeneration after brain injury is very limited, and although some neuroblasts from the rostral migratory stream will leave the path and migrate toward cortical lesion sites, this neuronal replacement is generally not sustained and therefore does not provide enough new neurons to alleviate functional deficits. Using newly discovered microtissue engineering techniques, we have built the first self-contained, implantable constructs that mimic the architecture and function of the rostral migratory stream. This engineered microtissue emulates the dense cord-like bundles of astrocytic somata and processes that are the hallmark anatomical feature of the glial tube. As such, our living microtissue-en- gineered rostral migratory stream can serve as an in vitro test bed for unlocking the secrets of neuroblast migration and maturation, and may potentially serve as a living transplantable construct derived from a patient's own cells that can redirect their own neuroblasts into lesion sites for sustained neuronal replace- ment following brain injury or neurodegenerative disease. In this paper, we summarize the development of fabrication methods for this microtissue-engineered rostral migratory stream and provide proof-of-princi- ple evidence that it promotes and directs migration of immature neurons.
基金Project (No. 99ZB14018) supported by the Natural Science Foun-dation of Shanghai, China
文摘Background: Endothelial and smooth muscle cells were used as seeding cells and heterogeneous acellularized matrix was used as scaffold to construct the tissue-engineered graft. Methods: A 2 weeks piglet was selected as a donor of seeding cells. Two-centimetre length of common carotid artery was dissected. Endothelial cells and smooth muscle cells were harvested by trypsin and collagenase digestion respectively. The isolated cells were cultured and expanded using routine cell culture technique. An adult sheep was used as a donor of acellularized matrix. The thoracic aorta was harvested and processed by a multi-step decellularizing technique to remove the original cells and preserve the elastic and collagen fibers. The cultured smooth muscle cells and endothelial cells were then seeded to the acellularized matrix and incubated in vitro for another 2 weeks. The cell seeded graft was then transplanted to the cell-donated piglet to substitute part of the native pulmonary artery. Results: The cultured cells from piglet were characterized as endothelial cells by the presence of specific antigens vWF and CD31, and smooth muscle cells by the presence of specific antigen a-actin on the cell surface respectively with immunohistochemical technique. After decellularizing processing for the thoracic aorta from sheep, all the cellular components were extracted and elastic and collagen fibers kept their original morphology and structure. The maximal load of acellular matrix was decreased and 20% lower than that of untreated thoracic aorta, but the maximal tensions between them were not different statistically and they had similar load-tension curves. Three months after transplantation, the animal was sacrificed and the graft was removed for observation. The results showed that the inner surfaces of the graft were smooth, without thrombosis and calcification. Under microscopy, a great number of growing cells could be seen and elastic and collagen fibers were abundant. Conclusion: Cultured self-derived endothelial and smooth muscle cells could be used as seeding cells and heterogeneous acellularized matrix could be used as scaffold in constructing tissue-engineered graft.
文摘Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have been recognized for their biocompatibility and biodegradability.However,their susceptibility to rapid corrosion and degradation has garnered notable research interest in bone tissue engineering(BTE),particularly in the development of Mg-incorporated biocomposite scaffolds.These scaffolds gradually release Mg2+,which enhances immunomodulation,osteogenesis,and angiogenesis,thus facilitating effective bone regeneration.This review presents myriad fabrication techniques used to create Mg-incorporated biocomposite scaffolds,including electrospinning,three-dimensional printing,and sol-gel synthesis.Despite these advancements,the application of Mg-incorporated biocomposite scaffolds faces challenges such as controlling the degradation rate of Mg and ensuring mechanical stability.These limitations highlight the necessity for ongoing research aimed at refining fabrication techniques to better regulate the physicochemical and osteogenic properties of scaffolds.This review provides insights into the potential of Mg-incorporated biocomposite scaffolds for BTE and the challenges that need to be addressed for their successful translation into clinical applications.
基金supported by the National Key Research and Development Program of China(2020YFA0908200)the National Natural Science Foundation of China(T2225003,52073060,and 61927805)+3 种基金the Nanjing Medical Science and Technique Development Foundation(ZKX21019)the Clinical Trials from Nanjing Drum Tower Hospital(2022-LCYJ-ZD-01)the Guangdong Basic and Applied Basic Research Foundation(2021B1515120054)the Shenzhen Fundamental Research Program(JCYJ20190813152616459 and JCYJ20210324133214038).
文摘Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocytes-associated self-repairing process in damaged tissue,we present novel biomimetic erythrocyte-like microparticles(ELMPs).These ELMPs,which are composed of extracellular matrix-like hybrid hydrogels and the functional additives of black phosphorus,hemoglobin,and growth factors(GFs),are generated by using a microfluidic electrospray.As the resultant ELMPs have the capacity for oxygen delivery and near-infrared-responsive release of both GFs and oxygen,they would have excellent biocompatibility and multifunctional performance when serving as microscaffolds for cell adhesion,stimulating angiogenesis,and adjusting the release profile of cargoes.Based on these features,we demonstrate that the ELMPs can stably overlap to fill a wound and realize controllable cargo release to achieve the desired curative effect of tissue regeneration.Thus,we consider our biomimetic ELMPs with discoid morphology and cargo-delivery capacity to be ideal for tissue engineering.