Purpose: The study was to evaluate the efficacy of cyanoacrylate tissue adhesive (CTA) application in corneal perforations. Method: This was a prospective study on 20 patients of corneal perforations who received cyan...Purpose: The study was to evaluate the efficacy of cyanoacrylate tissue adhesive (CTA) application in corneal perforations. Method: This was a prospective study on 20 patients of corneal perforations who received cyanoacrylate tissue adhesive application as treatment between March 2021 and March 2022 at Preah Ang Duong Hospital. The primary outcome measure was success rate of CTA application, while the secondary outcome was to measure postoperative best-corrected visual acuity (BCVA) and ocular complications. Results: The mean age of patients was 44.15 ± 16.05 years old and 7 (35%) were female. Causes of perforation were microbial infection in 12 patients (60%), trauma in 5 patients (25%), and sterile melting in 3 patients (15%). The perforation of size smaller than 1.5 mm was in 8 patients (40%) while 12 patients (60%) had perforated size between 1.5 mm to 3 mm. The perforation was 60% (12 patients) central, 25% (5 patients) paracentral, and 15% (3 patients) peripherally. Out of 20 patients, 5 patients (25%) received CTA application more than 1 time. The mean glue retention was 57.60 ± 31.84 days. Success rate of glue application (defined as intact globe without surgical intervention regardless of number of CTA applications) was 85%. At the last visit, 7 patients (35%) had BCVA of 6/120 or better. Common complications were uveitis (45%), ocular hypertension (30%), cataract (25%) and neovascularization (20%). No serious complications were found. Conclusion: Cyanoacrylate tissue adhesive is an effective treatment option in sealing corneal perforations with no serious complications. .展开更多
The combination of endoscopic ultrasound with endoscopic treatment of type 1 gastric variceal hemorrhage may improve the robustness and generalizability of the findings in future studies.Moreover,the esophageal varice...The combination of endoscopic ultrasound with endoscopic treatment of type 1 gastric variceal hemorrhage may improve the robustness and generalizability of the findings in future studies.Moreover,the esophageal varices should also be included in the evaluation of treatment efficacy in subsequent studies to reach a more convincing conclusion.展开更多
Background Reconstruction of damaged tissues requires both surface hemostasis and tissue bridging.Tissues with damage resulting from physical trauma or surgical treatments may have arbitrary surface topographies,makin...Background Reconstruction of damaged tissues requires both surface hemostasis and tissue bridging.Tissues with damage resulting from physical trauma or surgical treatments may have arbitrary surface topographies,making tissue bridging challenging.Methods This study proposes a tissue adhesive in the form of adhesive cryogel particles(ACPs) made from chitosan,acrylic acid,1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC) and N-hydroxysuccinimide(NHS).The adhesion performance was examined by the 180-degree peel test to a collection of tissues including porcine heart,intestine,liver,muscle,and stomach.Cytotoxicity of ACPs was evaluated by cell proliferation of human normal liver cells(LO2)and human intestinal epithelial cells(Caco-2).The degree of inflammation and biodegradability were examined in dorsal subcutaneous rat models.The ability of ACPs to bridge irregular tissue defects was assessed using porcine heart,liver,and kidney as the ex vivo models.Furthermore,a model of repairing liver rupture in rats and an intestinal anastomosis in rabbits were established to verify the effectiveness,biocompatibility,and applicability in clinical surgery.Results ACPs are applicable to confined and irregular tissue defects,such as deep herringbone grooves in the parenchyma organs and annular sections in the cavernous organs.ACPs formed tough adhesion between tissues[(670.9±50.1) J/m^(2) for the heart,(607.6±30.0) J/m^(2) for the intestine,(473.7±37.0) J/m^(2) for the liver,(186.1±13.3) J/m^(2) for the muscle,and(579.3±32.3) J/m^(2) for the stomach].ACPs showed considerable cytocompatibility in vitro study,with a high level of cell viability for 3 d[(98.8±1.2)%for LO2 and(98.3±1.6)%for Caco-2].It has comparable inflammation repair in a ruptured rat liver(P=0.58 compared with suture closure),the same with intestinal anastomosis in rabbits(P=0.40 compared with suture anastomosis).Additionally,ACP-based intestinal anastomosis(less than 30 s) was remarkably faster than the conventional suturing process(more than 10 min).When ACPs degrade after surgery,the tissues heal across the adhesion interface.Conclusions ACPs are promising as the adhesive for clinical operations and battlefield rescue,with the capability to bridge irregular tissue defects rapidly.展开更多
Background: The use of biological sealants has greatly increased during nephron sparing surgery. In many cases the bulk of the material was erroneously mistaken for tumor recurrence. Objective: To describe the charact...Background: The use of biological sealants has greatly increased during nephron sparing surgery. In many cases the bulk of the material was erroneously mistaken for tumor recurrence. Objective: To describe the characteristic appearance of biological adhesive material used for tumor bed closure on computerized tomography (CT) following nephrone sparing surgery (NSS) for renal cell carcinoma, in order to differentiate between typical features of the adhesive material and local tumor recurrence. Design, Setting and Participants: We retrospectively reviewed follow-up CT scans of 120 patients who underwent NSS for T1N0M0 RCC. In all cases tumor bed was closed during surgery with biological tissue adhesive (BioGlue). Results and Limitations: During 1994-2009, 120 patients with a single T1 renal cell carcinoma lesion, underwent NSS with closure of tumor bed with bio adhesive material. There were 66 males and 47 females with mean age of 58.7 years (median: 58 years, range: 28 - 85 years). Mean follow-up time was 45 ± 34 months (median 42, range 12 - 168). During follow-up, 3 patients had local recurrence at the site of previous enucleated lesion. In the first post-operative CT scan the BG appeared as a heterogeneous mass with sharp edges measuring 20 - 70 HU with no attenuation following the injection of contrast material. In subsequent follow-up scans the BG in most patients remained stable in size;in few patients slight reduction in size was observed probably due to the resolution of post-operative hematoma. Tumor recurrence that was documented in 3 patients was seen as a heterogeneous mass with attenuation of more than 20 HU following the injection of contrast material. In sequential CT’s the mass was increasing in size. Conclusions: BG appears as a non-enhancing stable mass in sequential CT’s following NSS, hence could be differentiated from local tumor recurrence. The ability to differentiate between normal post-operative status and recurrence could be compromised in patients with decreased renal function in whom contrast material could not be used.展开更多
In cases of auricular surgery, postoperative dressings are thought to be important for keeping auricular contour and in helping to prevent from dressing failures due to edema or subcutaneous hematoma, which may result...In cases of auricular surgery, postoperative dressings are thought to be important for keeping auricular contour and in helping to prevent from dressing failures due to edema or subcutaneous hematoma, which may result in fibrous or cartilaginous proliferation. However, it is often difficult to achieve success with standard dressings because of the complicated shape of the auricle. We used 2-octyl-cyanoacrylate skin adhesive to dress the auricle after different types of auricular procedures (five cases of cryptotia, two of prominent ear, two of severe auricular laceration, two of skin grafting and one of flap repair of the partial auricle defect). The 2-octyl-cyanoacrlaate skin adhesive was applied to the suture line and the operated and peripheral areas for wider coverage. No dressing materials were placed over the surface. In all cases, the desired outcome was achieved, without subcutaneous hematoma, wound dehiscence, and wound infection. Contact dermatitis caused by the skin adhesive was not observed in any of the cases. Dressing and splinting after auricular surgery can be simply and successfully achieved using 2-octyl-cyanoacrylate skin adhesive. There is no need for more complicated dressings and post-surgical dressing changes, resulting in higher patient satisfaction.展开更多
The use of biopolymers as bioadhesives for human tissue is becoming a preferred alternative to suturing due to their superior adhesive, biocompatible, and biodegradable properties. In this work, low molecular weight p...The use of biopolymers as bioadhesives for human tissue is becoming a preferred alternative to suturing due to their superior adhesive, biocompatible, and biodegradable properties. In this work, low molecular weight poly(L-lactide-co-ε-caprolactone) (P(LA-co-CL) was synthesized to achieve the glass transition temperature (Tg) of the copolymer at ambient temperature so that during application on the skin, the copolymer when combined with chitosan (CHI) into the CHI/P(LA-co-CL) film could provide the strong support at the injury site. Using alcohols with different numbers of hydroxyl groups as the co-initiator in polymerization provided the distinctive characteristics of copolymers. Among all copolymers synthesized, P(LA-co-CL) copolymer using pentaerythritol as the co-initiator when combined with CHI at the ratio of copolymer/CHI at 70/30 yielded the good film properties in tissue adhesion and tetracycline hydrochloride release.展开更多
When repairing nerves with adhesives, most researchers place glue directly on the nerve stumps, but this method does not fix the nerve ends well and allows glue to easily invade the nerve ends. In this study, we estab...When repairing nerves with adhesives, most researchers place glue directly on the nerve stumps, but this method does not fix the nerve ends well and allows glue to easily invade the nerve ends. In this study, we established a rat model of completely transected sciatic nerve injury and re- paired it using a modified 1 cm-length conduit with inner diameter of 1.5 mm. Each end of the cylindrical conduit contains a short linear channel, while the enclosed central tube protects the nerve ends well Nerves were repaired with 2-octyl-cyanoacrylate and suture, which complement the function of the modified conduit. The results demonstrated that for the same conduit, the av- erage operation time using the adhesive method was much shorter than with the suture method. No significant differences were found between the two groups in sciatic function index, motor evoked potential latency, motor evoked potential amplitude, muscular recovery rate, number of medullated nerve fibers, axon diameter, or medullary sheath thickness. Thus, the adhesive method for repairing nerves using a modified conduit is feasible and effective, and reduces the operation time while providing an equivalent repair effect.展开更多
AIMTo investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs) undergoing epithelial-mesenchymal transition (EMT) induced by connective tissue growth factor (CTGF).METHODSHLECs w...AIMTo investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs) undergoing epithelial-mesenchymal transition (EMT) induced by connective tissue growth factor (CTGF).METHODSHLECs were treated with CTGF of different concentrations (20, 50 and 100 ng/mL) or without CTGF (control) for 24h. The morphological changes of HLECs were analysed by microscopy. The expression and cellular localization of Slug was evaluated by immumo-fluorescence. Expressions of Slug, E-cadherin and alpha smooth muscle actin (α-SMA) were further determined by Western blot analysis.RESULTSHLECs showed spidle fibrolasts-like characteristics and loosely connected each other after CTGF treatment. The immuno-fluorescence staining indicated that Slug was localized in the nuclei and its expression was induced by CTGF. The relative expressions of Slug protein were 1.64±0.11, 1.96 ±0.03, 3.12 ±0.10, and 4.08±0.14, respectively, in response to control group and treatment with CTGF of 20, 50 and 100 ng/mL (F=443.86, P<0.01). The increased Slug protein levels were correlated well with up-expression of α-SMA (0.78±0.05, 0.85±0.06, 2.17±0.15, 2.86±0.10; F=449.85, P<0.01) and down-expression of E-cadherin (2.50±0.11, 1.79±0.26, 1.05±0.14, 0.63±0.08; F=101.55, P<0.01).CONCLUSIONTranscription factor Slug may be involved in EMT of HLECs induced by CTGF in vitro.展开更多
This study aimed to explore the molecular mechanism in tumor invasion and metastasis. The expression of matrix metalloproteinase 2, 9 (MMP 2, MMP 9), tissue inhibitor 1 of matrix metalloproteinase (TIMP 1), c...This study aimed to explore the molecular mechanism in tumor invasion and metastasis. The expression of matrix metalloproteinase 2, 9 (MMP 2, MMP 9), tissue inhibitor 1 of matrix metalloproteinase (TIMP 1), cell adhesion molecule 44 variant 6 (CD44v6), HER2/neu and p53 was investigated in 154 patients with head and neck squamous cell carcinoma (SCC) by ABC and ImmunoMax immunohistochemical method. Their clinical relevance and correlation were analysed. The expression of MMP 2, MMP 9, TIMP 1, CD44v6, HER2/neu and p53 was found in cancer cells in 87.01%, 85.71%, 68.18%, 98.05%, 55.19% and 50.65% cases respectively. Linear regression and correlation analysis revealed that there was close positive relationship ( P <0.05) between the expression of MMP 2 and MMP 9, TIMP 1 and CD44v6, HER2/neu and MMP 9, MMP 2 and p53. Up regulation of MMP 2 was accompanied by advanced T stage ( P <0.01) . There was also a trend of MMP 2 expression being related with tumor metastasis. Increased expression of HER2/neu was found in patients with tumor recurrence( P <0.05). The expression of TIMP 1 was higher in laryngeal cancer than that in pharyngeal cancer, and higher in keratinizing and non keratinizing SCC than that in basaloid SCC( P <0.05). These findings suggested that MMP 2 and MMP 9, HER2/neu and MMP 9, MMP 2 and p53 had a coordinate function in aggression of tumor; that MMP 2 had a more important function than MMP 9 in tumor invasion and metastasis; and that HER2/neu might serve as a biomarker for poor prognosis in HNSCC.展开更多
TO THE EDITORWe read with interest the article entitled "Bleeding gastric varices: Results of endoscopic injection with cyanoacrylate at King Chulalongkorn Memorial Hospital" by Noophun et al. They performed n-buty...TO THE EDITORWe read with interest the article entitled "Bleeding gastric varices: Results of endoscopic injection with cyanoacrylate at King Chulalongkorn Memorial Hospital" by Noophun et al. They performed n-butyl-2-cyanoacrylate (CA) injection therapy for bleeding gastric varices in twentyfour patients, and hemostasis was achieved in seventeen (71%) patients. They concluded that CA injection therapy was effective and safe for bleeding gastric varices. However, we disagreed with the author's conclusion.展开更多
As a superior alternative to sutures,tissue adhesives have been developed significantly in recent years.However,existing tissue adhesives struggle to form fast and stable adhesion between tissue interfaces,bond weakly...As a superior alternative to sutures,tissue adhesives have been developed significantly in recent years.However,existing tissue adhesives struggle to form fast and stable adhesion between tissue interfaces,bond weakly in wet environments and lack bioactivity.In this study,a degradable and bioactive citrate-based polyurethane adhesive is constructed to achieve rapid and strong tissue adhesion.The hydrophobic layer was created with polycaprolactone to overcome the bonding failure between tissue and adhesion layer in wet environments,which can effectively improve the wet bonding strength.This citrate-based polyurethane adhesive provides rapid,non-invasive,liquid-tight and seamless closure of skin incisions,overcoming the limitations of sutures and commercial tissue adhesives.In addition,it exhibits biocompatibility,biodegradability and hemostatic properties.The degradation product citrate could promote the process of angiogenesis and accelerate wound healing.This study provides a novel approach to the development of a fast-adhering wet tissue adhesive and provides a valuable contribution to the development of polyurethane-based tissue adhesives.展开更多
Adhesions are the most frequent complication of abdominopelvic surgery,yet the extent of the problem,and its serious consequences,has not been adequately recognized.Adhesions evolved as a life-saving mecha-nism to lim...Adhesions are the most frequent complication of abdominopelvic surgery,yet the extent of the problem,and its serious consequences,has not been adequately recognized.Adhesions evolved as a life-saving mecha-nism to limit the spread of intraperitoneal inflammatory conditions.Three different pathophysiological mechanisms can independently trigger adhesion formation.Mesothelial cell injury and loss during operations,tissue hypoxia and inflammation each promotes adhesion formation separately,and potentiate the effect of each other.Studies have repeatedly demonstrated that interruption of a single pathway does not completely prevent adhesion formation.This review summarizes the pathogenesis of adhesion formation and the results of single gene therapy interventions.It explores the prom-ising role of combinatorial gene therapy and vector modif ications for the prevention of adhesion formation in order to stimulate new ideas and encourage rapid advancements in this field.展开更多
Hydrogels with multifunctionalities,including sufficient bonding strength,injectability and self-healing capacity,responsive-adhesive ability,fault-tolerant and repeated tissue adhesion,are urgently demanded for invas...Hydrogels with multifunctionalities,including sufficient bonding strength,injectability and self-healing capacity,responsive-adhesive ability,fault-tolerant and repeated tissue adhesion,are urgently demanded for invasive wound closure and wound healing.Motivated by the adhesive mechanism of mussel and brown algae,bioinspired dynamic bonds cross-linked multifunctional hydrogel adhesive is designed based on sodium alginate(SA),gelatin(GT)and protocatechualdehyde,with ferric ions added,for sutureless post-wound-closure.The dynamic hydrogel cross-linked through Schiff base bond,catechol-Fe coordinate bond and the strong interaction between GT with temperature-dependent phase transition and SA,endows the resulting hydrogel with sufficient mechanical and adhesive strength for efficient wound closure,injectability and self-healing capacity,and repeated closure of reopened wounds.Moreover,the temperature-dependent adhesive properties endowed mispositioning hydrogel to be removed/repositioned,which is conducive for the fault-tolerant adhesion of the hydrogel adhesives during surgery.Besides,the hydrogels present good biocompatibility,near-infrared-assisted photothermal antibacterial activity,antioxidation and repeated thermo-responsive reversible adhesion and good hemostatic effect.The in vivo incision closure evaluation demonstrated their capability to promote the post-wound-closure and wound healing of the incisions,indicating that the developed reversible adhesive hydrogel dressing could serve as versatile tissue sealant.展开更多
Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginat...Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (A- SA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff's base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive.展开更多
The cell adhesive properties of decellularized valve scaffolds were promoted by immobilization of valve scaffold with arginine-glycine-aspartic acid (RGD)-containing peptides. Porcine aortic valves were decellulariz...The cell adhesive properties of decellularized valve scaffolds were promoted by immobilization of valve scaffold with arginine-glycine-aspartic acid (RGD)-containing peptides. Porcine aortic valves were decellularized with trypsin/EDTA, and detergent Triton X-100. With the help of a coupling reagent Sulfo-LC-SPDP, the valve scaffolds were immobilized with glycine-arginine-glycine-aspartic acid-serine-proline-cysteine (GRGDSPC) peptide. X-ray photoelectron spectroscopy (XPS) was used for surface structure analysis. Myofibroblasts harvested from rats were seeded onto the valve scaffolds. Cell count by using microscopy and modified MTT assay were performed to assess cell adhesion. Based on the spectra of XPS, the conjugation of GRGDSPC peptide with decellularized valve scaffolds was confirmed. Both cell count and MTT assay showed that myofibroblasts were much easier to adhere to the modified valve scaffolds, which was also confirmed histologically. Our findings suggest that it is feasible to immobilize RGD-containing peptides onto decellularized valve scaffolds. And the technique can effectively promote cell adhesion, which is beneficial for in vitro tissue engineering of heart valves.展开更多
Effective strategy of hemostasis and promoting angiogenesis are becoming increasingly urgent in modern medicine due to millions of deaths caused by tissue damage and inflammation. The tissue adhesive has been favored ...Effective strategy of hemostasis and promoting angiogenesis are becoming increasingly urgent in modern medicine due to millions of deaths caused by tissue damage and inflammation. The tissue adhesive has been favored as an optimistic and efficient path to stop bleeding, while, current adhesive presents limitations on wound care or potential degradation safety in clinical practice. Therefore, it is of great clinical significance to construct multifunctional wound adhesive to address the issues. Based on pro-angiogenic property of L-Arginine (L-Arg), in this study, the novel tissue adhesive (G-DLPUs) constructed by L-Arg-based degradable polyurethane (DLPU) and GelMA were prepared for wound care. After systematic characterization, we found that the G-DLPUs were endowed with excellent capability in shape-adaptive adhesion. Moreover, the L-Arg released and the generation of NO during degradation were verified which would enhance wound healing. Following the in vivo biocompatibility was verified, the hemostatic effect of the damaged organ was tested using a rat liver hemor-rhage model, from which reveals that the G-DLPUs can reduce liver bleeding by nearly 75% and no obvious inflammatory cells observed around the tissue. Moreover, the wound care effect was confirmed in a mouse full-thickness skin defect model, showing that the hydrogel adhesive significantly improves the thickness of newly formed dermis and enhance vascularization (CD31 staining). In summary, the G-DLPUs are promising candidate to act as multifunctional wound care adhesive for both damaged organ and trauma.展开更多
Developing a biocompatible and multifunctional adhesive hydrogel with injectability and self-healing ability for promoting wound healing is highly anticipated in various clinical applications.In this paper,we present ...Developing a biocompatible and multifunctional adhesive hydrogel with injectability and self-healing ability for promoting wound healing is highly anticipated in various clinical applications.In this paper,we present a novel natural biopolymer-derived hydrogel based on the aldehyde-modified oxidized guar gum(OGG)and the carboxymethyl chitosan(CMCS)for efficiently improving wound healing with the encapsulation of vascular endothelial growth factor(VEGF).As the hydrogels are synthesized via the dynamically reversible Schiff base linkages,it is imparted with excellent self-healing ability and good shear thinning behavior,which make the hydrogel be easily and conveniently injected through a needle.Besides,the physiochemical properties,including porous structure,mechanical strength and swelling ratio of the hydrogel can be well controlled by regulating the concentrations of the OGG.Moreover,the hydrogel can attain strong adhesion to the tissues at physiological temperature based on the Schiff base between the aldehyde group on the hydrogel and the amino group on the tissue.Based on these features,we have demonstrated that the VEGF encapsulated hydrogel can adhere tightly to the defect tissue and improve wound repair in the rat model of defected skin by promoting cell proliferation,angiogenesis,and collagen secretion.These results indicate that the multifunctional hydrogel is with great scientific significance and broad clinical application prospects.展开更多
Bioadhesives act as a bridge in wound closure by forming an effective interface to protect against liquid and gas leakage and aid the stoppage of bleeding.To their credit,tissue adhesives have made an indelible impact...Bioadhesives act as a bridge in wound closure by forming an effective interface to protect against liquid and gas leakage and aid the stoppage of bleeding.To their credit,tissue adhesives have made an indelible impact on almost all wound-related surgeries.Their unique properties include minimal damage to tissues,low chance of infection,ease of use and short wound-closure time.In contrast,classic closures,like suturing and stapling,exhibit potential additional complications with long operation times and undesirable inflammatory responses.Although tremendous progress has been made in the development of tissue adhesives,they are not yet ideal.Therefore,highlighting and summarizing existing adhesive designs and synthesis,and comparing the different products will contribute to future development.This review first provides a summary of current commercial traditional tissue adhesives.Then,based on adhesion interaction mechanisms,the tissue adhesives are categorized into three main types:adhesive patches that bind molecularly with tissue,tissuestitching adhesives based on pre-polymer or precursor solutions,and bioinspired or biomimetic tissue adhesives.Their specific adhesion mechanisms,properties and related applications are discussed.The adhesion mechanisms of commercial traditional adhesives as well as their limitations and shortcomings are also reviewed.Finally,we also discuss the future perspectives of tissue adhesives.展开更多
Tissue-adhesive materials are emerging biomaterials with potential applications in wound healing patches,tissue sealants,and haemostat materials.Tissue adhesives based on synthetic polymers generally have good adhesio...Tissue-adhesive materials are emerging biomaterials with potential applications in wound healing patches,tissue sealants,and haemostat materials.Tissue adhesives based on synthetic polymers generally have good adhesion but are not biodegradable.However,the long-term presence of non-biodegradable adhesives in the body can cause secondary harm to the patient.An ideal tissue adhesive should meet the following requirements:good adhesiveness,biodegradability,low cytotoxicity,and minimal inflammatory response.Natural polymers with inherent biodegradation and biocompatibility show great potentials in biomedical engineering,and the development of tissue adhesives based on natural polymers has become a hot topic in biomaterials science.This review systemat-ically summarises the latest progresses in biodegradable tissue adhesives based on natural polymers,such as chitosan,hyaluronic acid,alginate,gelatin,dextran,and cellulose.Methods for preparing natural polymer tissue adhesives are summarised and their ad-vantages and disadvantages are discussed.Finally,potential trends in the future direction of biodegradable tissue adhesives are discussed.展开更多
文摘Purpose: The study was to evaluate the efficacy of cyanoacrylate tissue adhesive (CTA) application in corneal perforations. Method: This was a prospective study on 20 patients of corneal perforations who received cyanoacrylate tissue adhesive application as treatment between March 2021 and March 2022 at Preah Ang Duong Hospital. The primary outcome measure was success rate of CTA application, while the secondary outcome was to measure postoperative best-corrected visual acuity (BCVA) and ocular complications. Results: The mean age of patients was 44.15 ± 16.05 years old and 7 (35%) were female. Causes of perforation were microbial infection in 12 patients (60%), trauma in 5 patients (25%), and sterile melting in 3 patients (15%). The perforation of size smaller than 1.5 mm was in 8 patients (40%) while 12 patients (60%) had perforated size between 1.5 mm to 3 mm. The perforation was 60% (12 patients) central, 25% (5 patients) paracentral, and 15% (3 patients) peripherally. Out of 20 patients, 5 patients (25%) received CTA application more than 1 time. The mean glue retention was 57.60 ± 31.84 days. Success rate of glue application (defined as intact globe without surgical intervention regardless of number of CTA applications) was 85%. At the last visit, 7 patients (35%) had BCVA of 6/120 or better. Common complications were uveitis (45%), ocular hypertension (30%), cataract (25%) and neovascularization (20%). No serious complications were found. Conclusion: Cyanoacrylate tissue adhesive is an effective treatment option in sealing corneal perforations with no serious complications. .
文摘The combination of endoscopic ultrasound with endoscopic treatment of type 1 gastric variceal hemorrhage may improve the robustness and generalizability of the findings in future studies.Moreover,the esophageal varices should also be included in the evaluation of treatment efficacy in subsequent studies to reach a more convincing conclusion.
基金supported by the National Natural Science Foundation of China (12102388, T2125009, 92048302)the National Key Research and Development Program of China 2017 (YFA0701100)the Fundamental Research Funds for the Central Universities (226-2022-00141, 2022QZJH52)。
文摘Background Reconstruction of damaged tissues requires both surface hemostasis and tissue bridging.Tissues with damage resulting from physical trauma or surgical treatments may have arbitrary surface topographies,making tissue bridging challenging.Methods This study proposes a tissue adhesive in the form of adhesive cryogel particles(ACPs) made from chitosan,acrylic acid,1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC) and N-hydroxysuccinimide(NHS).The adhesion performance was examined by the 180-degree peel test to a collection of tissues including porcine heart,intestine,liver,muscle,and stomach.Cytotoxicity of ACPs was evaluated by cell proliferation of human normal liver cells(LO2)and human intestinal epithelial cells(Caco-2).The degree of inflammation and biodegradability were examined in dorsal subcutaneous rat models.The ability of ACPs to bridge irregular tissue defects was assessed using porcine heart,liver,and kidney as the ex vivo models.Furthermore,a model of repairing liver rupture in rats and an intestinal anastomosis in rabbits were established to verify the effectiveness,biocompatibility,and applicability in clinical surgery.Results ACPs are applicable to confined and irregular tissue defects,such as deep herringbone grooves in the parenchyma organs and annular sections in the cavernous organs.ACPs formed tough adhesion between tissues[(670.9±50.1) J/m^(2) for the heart,(607.6±30.0) J/m^(2) for the intestine,(473.7±37.0) J/m^(2) for the liver,(186.1±13.3) J/m^(2) for the muscle,and(579.3±32.3) J/m^(2) for the stomach].ACPs showed considerable cytocompatibility in vitro study,with a high level of cell viability for 3 d[(98.8±1.2)%for LO2 and(98.3±1.6)%for Caco-2].It has comparable inflammation repair in a ruptured rat liver(P=0.58 compared with suture closure),the same with intestinal anastomosis in rabbits(P=0.40 compared with suture anastomosis).Additionally,ACP-based intestinal anastomosis(less than 30 s) was remarkably faster than the conventional suturing process(more than 10 min).When ACPs degrade after surgery,the tissues heal across the adhesion interface.Conclusions ACPs are promising as the adhesive for clinical operations and battlefield rescue,with the capability to bridge irregular tissue defects rapidly.
文摘Background: The use of biological sealants has greatly increased during nephron sparing surgery. In many cases the bulk of the material was erroneously mistaken for tumor recurrence. Objective: To describe the characteristic appearance of biological adhesive material used for tumor bed closure on computerized tomography (CT) following nephrone sparing surgery (NSS) for renal cell carcinoma, in order to differentiate between typical features of the adhesive material and local tumor recurrence. Design, Setting and Participants: We retrospectively reviewed follow-up CT scans of 120 patients who underwent NSS for T1N0M0 RCC. In all cases tumor bed was closed during surgery with biological tissue adhesive (BioGlue). Results and Limitations: During 1994-2009, 120 patients with a single T1 renal cell carcinoma lesion, underwent NSS with closure of tumor bed with bio adhesive material. There were 66 males and 47 females with mean age of 58.7 years (median: 58 years, range: 28 - 85 years). Mean follow-up time was 45 ± 34 months (median 42, range 12 - 168). During follow-up, 3 patients had local recurrence at the site of previous enucleated lesion. In the first post-operative CT scan the BG appeared as a heterogeneous mass with sharp edges measuring 20 - 70 HU with no attenuation following the injection of contrast material. In subsequent follow-up scans the BG in most patients remained stable in size;in few patients slight reduction in size was observed probably due to the resolution of post-operative hematoma. Tumor recurrence that was documented in 3 patients was seen as a heterogeneous mass with attenuation of more than 20 HU following the injection of contrast material. In sequential CT’s the mass was increasing in size. Conclusions: BG appears as a non-enhancing stable mass in sequential CT’s following NSS, hence could be differentiated from local tumor recurrence. The ability to differentiate between normal post-operative status and recurrence could be compromised in patients with decreased renal function in whom contrast material could not be used.
文摘In cases of auricular surgery, postoperative dressings are thought to be important for keeping auricular contour and in helping to prevent from dressing failures due to edema or subcutaneous hematoma, which may result in fibrous or cartilaginous proliferation. However, it is often difficult to achieve success with standard dressings because of the complicated shape of the auricle. We used 2-octyl-cyanoacrylate skin adhesive to dress the auricle after different types of auricular procedures (five cases of cryptotia, two of prominent ear, two of severe auricular laceration, two of skin grafting and one of flap repair of the partial auricle defect). The 2-octyl-cyanoacrlaate skin adhesive was applied to the suture line and the operated and peripheral areas for wider coverage. No dressing materials were placed over the surface. In all cases, the desired outcome was achieved, without subcutaneous hematoma, wound dehiscence, and wound infection. Contact dermatitis caused by the skin adhesive was not observed in any of the cases. Dressing and splinting after auricular surgery can be simply and successfully achieved using 2-octyl-cyanoacrylate skin adhesive. There is no need for more complicated dressings and post-surgical dressing changes, resulting in higher patient satisfaction.
文摘The use of biopolymers as bioadhesives for human tissue is becoming a preferred alternative to suturing due to their superior adhesive, biocompatible, and biodegradable properties. In this work, low molecular weight poly(L-lactide-co-ε-caprolactone) (P(LA-co-CL) was synthesized to achieve the glass transition temperature (Tg) of the copolymer at ambient temperature so that during application on the skin, the copolymer when combined with chitosan (CHI) into the CHI/P(LA-co-CL) film could provide the strong support at the injury site. Using alcohols with different numbers of hydroxyl groups as the co-initiator in polymerization provided the distinctive characteristics of copolymers. Among all copolymers synthesized, P(LA-co-CL) copolymer using pentaerythritol as the co-initiator when combined with CHI at the ratio of copolymer/CHI at 70/30 yielded the good film properties in tissue adhesion and tetracycline hydrochloride release.
基金supported by the International Technology Cooperation Program,No.S2014ZR0393
文摘When repairing nerves with adhesives, most researchers place glue directly on the nerve stumps, but this method does not fix the nerve ends well and allows glue to easily invade the nerve ends. In this study, we established a rat model of completely transected sciatic nerve injury and re- paired it using a modified 1 cm-length conduit with inner diameter of 1.5 mm. Each end of the cylindrical conduit contains a short linear channel, while the enclosed central tube protects the nerve ends well Nerves were repaired with 2-octyl-cyanoacrylate and suture, which complement the function of the modified conduit. The results demonstrated that for the same conduit, the av- erage operation time using the adhesive method was much shorter than with the suture method. No significant differences were found between the two groups in sciatic function index, motor evoked potential latency, motor evoked potential amplitude, muscular recovery rate, number of medullated nerve fibers, axon diameter, or medullary sheath thickness. Thus, the adhesive method for repairing nerves using a modified conduit is feasible and effective, and reduces the operation time while providing an equivalent repair effect.
基金Supported by National Natural Science Foundation of China(No.81470614,No.81460163,No.81300786)Fundamental Research Funds for the Central Universities(No.xjj2014146)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(No.20133601120012)Key International Communication Project of Shaanxi province(No.2012KW-31)
文摘AIMTo investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs) undergoing epithelial-mesenchymal transition (EMT) induced by connective tissue growth factor (CTGF).METHODSHLECs were treated with CTGF of different concentrations (20, 50 and 100 ng/mL) or without CTGF (control) for 24h. The morphological changes of HLECs were analysed by microscopy. The expression and cellular localization of Slug was evaluated by immumo-fluorescence. Expressions of Slug, E-cadherin and alpha smooth muscle actin (α-SMA) were further determined by Western blot analysis.RESULTSHLECs showed spidle fibrolasts-like characteristics and loosely connected each other after CTGF treatment. The immuno-fluorescence staining indicated that Slug was localized in the nuclei and its expression was induced by CTGF. The relative expressions of Slug protein were 1.64±0.11, 1.96 ±0.03, 3.12 ±0.10, and 4.08±0.14, respectively, in response to control group and treatment with CTGF of 20, 50 and 100 ng/mL (F=443.86, P<0.01). The increased Slug protein levels were correlated well with up-expression of α-SMA (0.78±0.05, 0.85±0.06, 2.17±0.15, 2.86±0.10; F=449.85, P<0.01) and down-expression of E-cadherin (2.50±0.11, 1.79±0.26, 1.05±0.14, 0.63±0.08; F=101.55, P<0.01).CONCLUSIONTranscription factor Slug may be involved in EMT of HLECs induced by CTGF in vitro.
文摘This study aimed to explore the molecular mechanism in tumor invasion and metastasis. The expression of matrix metalloproteinase 2, 9 (MMP 2, MMP 9), tissue inhibitor 1 of matrix metalloproteinase (TIMP 1), cell adhesion molecule 44 variant 6 (CD44v6), HER2/neu and p53 was investigated in 154 patients with head and neck squamous cell carcinoma (SCC) by ABC and ImmunoMax immunohistochemical method. Their clinical relevance and correlation were analysed. The expression of MMP 2, MMP 9, TIMP 1, CD44v6, HER2/neu and p53 was found in cancer cells in 87.01%, 85.71%, 68.18%, 98.05%, 55.19% and 50.65% cases respectively. Linear regression and correlation analysis revealed that there was close positive relationship ( P <0.05) between the expression of MMP 2 and MMP 9, TIMP 1 and CD44v6, HER2/neu and MMP 9, MMP 2 and p53. Up regulation of MMP 2 was accompanied by advanced T stage ( P <0.01) . There was also a trend of MMP 2 expression being related with tumor metastasis. Increased expression of HER2/neu was found in patients with tumor recurrence( P <0.05). The expression of TIMP 1 was higher in laryngeal cancer than that in pharyngeal cancer, and higher in keratinizing and non keratinizing SCC than that in basaloid SCC( P <0.05). These findings suggested that MMP 2 and MMP 9, HER2/neu and MMP 9, MMP 2 and p53 had a coordinate function in aggression of tumor; that MMP 2 had a more important function than MMP 9 in tumor invasion and metastasis; and that HER2/neu might serve as a biomarker for poor prognosis in HNSCC.
文摘TO THE EDITORWe read with interest the article entitled "Bleeding gastric varices: Results of endoscopic injection with cyanoacrylate at King Chulalongkorn Memorial Hospital" by Noophun et al. They performed n-butyl-2-cyanoacrylate (CA) injection therapy for bleeding gastric varices in twentyfour patients, and hemostasis was achieved in seventeen (71%) patients. They concluded that CA injection therapy was effective and safe for bleeding gastric varices. However, we disagreed with the author's conclusion.
基金supported by grants from the National Natural Science Foundation of China(52372272,32201109,32360234)the Key Basic Research Program of Shenzhen(JCYJ20200109150218836)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2022B1515120052,2021A1515110557)the Self-innovation Research Funding Project of Hanjiang Laboratory(HJL202202A002).
文摘As a superior alternative to sutures,tissue adhesives have been developed significantly in recent years.However,existing tissue adhesives struggle to form fast and stable adhesion between tissue interfaces,bond weakly in wet environments and lack bioactivity.In this study,a degradable and bioactive citrate-based polyurethane adhesive is constructed to achieve rapid and strong tissue adhesion.The hydrophobic layer was created with polycaprolactone to overcome the bonding failure between tissue and adhesion layer in wet environments,which can effectively improve the wet bonding strength.This citrate-based polyurethane adhesive provides rapid,non-invasive,liquid-tight and seamless closure of skin incisions,overcoming the limitations of sutures and commercial tissue adhesives.In addition,it exhibits biocompatibility,biodegradability and hemostatic properties.The degradation product citrate could promote the process of angiogenesis and accelerate wound healing.This study provides a novel approach to the development of a fast-adhering wet tissue adhesive and provides a valuable contribution to the development of polyurethane-based tissue adhesives.
基金Supported by The United States-Egypt Science and Technology Joint Fund in cooperation with United States Department of Agriculturethe Egyptian Science and Technology Development Fund under Project 739
文摘Adhesions are the most frequent complication of abdominopelvic surgery,yet the extent of the problem,and its serious consequences,has not been adequately recognized.Adhesions evolved as a life-saving mecha-nism to limit the spread of intraperitoneal inflammatory conditions.Three different pathophysiological mechanisms can independently trigger adhesion formation.Mesothelial cell injury and loss during operations,tissue hypoxia and inflammation each promotes adhesion formation separately,and potentiate the effect of each other.Studies have repeatedly demonstrated that interruption of a single pathway does not completely prevent adhesion formation.This review summarizes the pathogenesis of adhesion formation and the results of single gene therapy interventions.It explores the prom-ising role of combinatorial gene therapy and vector modif ications for the prevention of adhesion formation in order to stimulate new ideas and encourage rapid advancements in this field.
基金supported by the National Natural Science Foundation of China (No. 51973172)Natural Science Foundation of Shaanxi Province (Nos. 2020JC-03 and 2019TD-020)+2 种基金the State Key Laboratory for Mechanical Behavior of Materials,the World-Class Universities (Disciplines) and Characteristic Development Guidance Funds for the Central UniversitiesFundamental Research Funds for the Central Universitiesthe Opening Project of the Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research,College of Stomatology,Xi’an Jiaotong University (No. 2019LHM-KFKT008).
文摘Hydrogels with multifunctionalities,including sufficient bonding strength,injectability and self-healing capacity,responsive-adhesive ability,fault-tolerant and repeated tissue adhesion,are urgently demanded for invasive wound closure and wound healing.Motivated by the adhesive mechanism of mussel and brown algae,bioinspired dynamic bonds cross-linked multifunctional hydrogel adhesive is designed based on sodium alginate(SA),gelatin(GT)and protocatechualdehyde,with ferric ions added,for sutureless post-wound-closure.The dynamic hydrogel cross-linked through Schiff base bond,catechol-Fe coordinate bond and the strong interaction between GT with temperature-dependent phase transition and SA,endows the resulting hydrogel with sufficient mechanical and adhesive strength for efficient wound closure,injectability and self-healing capacity,and repeated closure of reopened wounds.Moreover,the temperature-dependent adhesive properties endowed mispositioning hydrogel to be removed/repositioned,which is conducive for the fault-tolerant adhesion of the hydrogel adhesives during surgery.Besides,the hydrogels present good biocompatibility,near-infrared-assisted photothermal antibacterial activity,antioxidation and repeated thermo-responsive reversible adhesion and good hemostatic effect.The in vivo incision closure evaluation demonstrated their capability to promote the post-wound-closure and wound healing of the incisions,indicating that the developed reversible adhesive hydrogel dressing could serve as versatile tissue sealant.
基金Acknowledgements The authors sincerely appreciate the supports of the National Major Research Program of China (2016YFC1100202), the National Natural Science Foundation of China (Grant No. 31470941), the Yantai Double Hundred Talent Plan, and the "111 Project" Biomedical Textile Materials Science and Technology, China (Grant No. B07024).
文摘Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (A- SA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff's base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive.
基金supported by grants from the National Natural Sciences Foundation of China(No.30571839 and30600608)
文摘The cell adhesive properties of decellularized valve scaffolds were promoted by immobilization of valve scaffold with arginine-glycine-aspartic acid (RGD)-containing peptides. Porcine aortic valves were decellularized with trypsin/EDTA, and detergent Triton X-100. With the help of a coupling reagent Sulfo-LC-SPDP, the valve scaffolds were immobilized with glycine-arginine-glycine-aspartic acid-serine-proline-cysteine (GRGDSPC) peptide. X-ray photoelectron spectroscopy (XPS) was used for surface structure analysis. Myofibroblasts harvested from rats were seeded onto the valve scaffolds. Cell count by using microscopy and modified MTT assay were performed to assess cell adhesion. Based on the spectra of XPS, the conjugation of GRGDSPC peptide with decellularized valve scaffolds was confirmed. Both cell count and MTT assay showed that myofibroblasts were much easier to adhere to the modified valve scaffolds, which was also confirmed histologically. Our findings suggest that it is feasible to immobilize RGD-containing peptides onto decellularized valve scaffolds. And the technique can effectively promote cell adhesion, which is beneficial for in vitro tissue engineering of heart valves.
基金This work was financially supported by National Natural Science Foundation of China(Grant No.51973018,51773018)Fundamental Research Funds for the Central Universities(FRF-TP-17-001A2)Beijing Municipal Science and Technology Commission Projects(No.Z191100002019017).
文摘Effective strategy of hemostasis and promoting angiogenesis are becoming increasingly urgent in modern medicine due to millions of deaths caused by tissue damage and inflammation. The tissue adhesive has been favored as an optimistic and efficient path to stop bleeding, while, current adhesive presents limitations on wound care or potential degradation safety in clinical practice. Therefore, it is of great clinical significance to construct multifunctional wound adhesive to address the issues. Based on pro-angiogenic property of L-Arginine (L-Arg), in this study, the novel tissue adhesive (G-DLPUs) constructed by L-Arg-based degradable polyurethane (DLPU) and GelMA were prepared for wound care. After systematic characterization, we found that the G-DLPUs were endowed with excellent capability in shape-adaptive adhesion. Moreover, the L-Arg released and the generation of NO during degradation were verified which would enhance wound healing. Following the in vivo biocompatibility was verified, the hemostatic effect of the damaged organ was tested using a rat liver hemor-rhage model, from which reveals that the G-DLPUs can reduce liver bleeding by nearly 75% and no obvious inflammatory cells observed around the tissue. Moreover, the wound care effect was confirmed in a mouse full-thickness skin defect model, showing that the hydrogel adhesive significantly improves the thickness of newly formed dermis and enhance vascularization (CD31 staining). In summary, the G-DLPUs are promising candidate to act as multifunctional wound care adhesive for both damaged organ and trauma.
基金supported by the National Natural Science Foundation of China(Nos.82101184 and 82102511)the Shenzhen Fundamental Research Program(Nos.JCYJ20210324102809024,JCYJ20190813152616459 and JCYJ20210324133214038)+4 种基金the Shenzhen PhD Start-up Program(Nos.RCBS20210609103713045,ZDSYS20200811142600003,JCYJ20180228162928828,and JCYJ20190806161409092)the Natural Science Foundation of Guangdong Province(No.2020A1515110780)the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120054)the Natural Science Foundation of Jiangsu(No.BK20210021)the Research Project of Jiangsu Province Health Committee(No.M2021031).
文摘Developing a biocompatible and multifunctional adhesive hydrogel with injectability and self-healing ability for promoting wound healing is highly anticipated in various clinical applications.In this paper,we present a novel natural biopolymer-derived hydrogel based on the aldehyde-modified oxidized guar gum(OGG)and the carboxymethyl chitosan(CMCS)for efficiently improving wound healing with the encapsulation of vascular endothelial growth factor(VEGF).As the hydrogels are synthesized via the dynamically reversible Schiff base linkages,it is imparted with excellent self-healing ability and good shear thinning behavior,which make the hydrogel be easily and conveniently injected through a needle.Besides,the physiochemical properties,including porous structure,mechanical strength and swelling ratio of the hydrogel can be well controlled by regulating the concentrations of the OGG.Moreover,the hydrogel can attain strong adhesion to the tissues at physiological temperature based on the Schiff base between the aldehyde group on the hydrogel and the amino group on the tissue.Based on these features,we have demonstrated that the VEGF encapsulated hydrogel can adhere tightly to the defect tissue and improve wound repair in the rat model of defected skin by promoting cell proliferation,angiogenesis,and collagen secretion.These results indicate that the multifunctional hydrogel is with great scientific significance and broad clinical application prospects.
文摘Bioadhesives act as a bridge in wound closure by forming an effective interface to protect against liquid and gas leakage and aid the stoppage of bleeding.To their credit,tissue adhesives have made an indelible impact on almost all wound-related surgeries.Their unique properties include minimal damage to tissues,low chance of infection,ease of use and short wound-closure time.In contrast,classic closures,like suturing and stapling,exhibit potential additional complications with long operation times and undesirable inflammatory responses.Although tremendous progress has been made in the development of tissue adhesives,they are not yet ideal.Therefore,highlighting and summarizing existing adhesive designs and synthesis,and comparing the different products will contribute to future development.This review first provides a summary of current commercial traditional tissue adhesives.Then,based on adhesion interaction mechanisms,the tissue adhesives are categorized into three main types:adhesive patches that bind molecularly with tissue,tissuestitching adhesives based on pre-polymer or precursor solutions,and bioinspired or biomimetic tissue adhesives.Their specific adhesion mechanisms,properties and related applications are discussed.The adhesion mechanisms of commercial traditional adhesives as well as their limitations and shortcomings are also reviewed.Finally,we also discuss the future perspectives of tissue adhesives.
基金NSFC,Grant/Award Numbers:82072071,31800798Fundamental Research Funds for the Central Universities,Grant/Award Number:2682020ZT79National Key Research and Development Program of China,Grant/Award Number:2016YFB0700802。
文摘Tissue-adhesive materials are emerging biomaterials with potential applications in wound healing patches,tissue sealants,and haemostat materials.Tissue adhesives based on synthetic polymers generally have good adhesion but are not biodegradable.However,the long-term presence of non-biodegradable adhesives in the body can cause secondary harm to the patient.An ideal tissue adhesive should meet the following requirements:good adhesiveness,biodegradability,low cytotoxicity,and minimal inflammatory response.Natural polymers with inherent biodegradation and biocompatibility show great potentials in biomedical engineering,and the development of tissue adhesives based on natural polymers has become a hot topic in biomaterials science.This review systemat-ically summarises the latest progresses in biodegradable tissue adhesives based on natural polymers,such as chitosan,hyaluronic acid,alginate,gelatin,dextran,and cellulose.Methods for preparing natural polymer tissue adhesives are summarised and their ad-vantages and disadvantages are discussed.Finally,potential trends in the future direction of biodegradable tissue adhesives are discussed.