Extracellular matrix(ECM)-based implantable neural electrodes(NEs)were achieved using a microfabrication strategy on naturalsubstrate-based organic materials.The ECM-based design minimized the introduction of non-natu...Extracellular matrix(ECM)-based implantable neural electrodes(NEs)were achieved using a microfabrication strategy on naturalsubstrate-based organic materials.The ECM-based design minimized the introduction of non-natural products into the brain.Further,it rendered the implants sufficiently rigid for penetration into the target brain region and allowed them subsequently to soften to match the elastic modulus of brain tissue upon exposure to physiological conditions,thereby reducing inflammatory strain fields in the tissue.Preliminary studies suggested that ECM-NEs produce a reduced inflammatory response compared with inorganic rigid and flexible approaches.In vivo intracortical recordings from the rat motor cortex illustrate one mode of use for these ECM-NEs.展开更多
基金This work was funded by the Defense Advanced Research Projects Agency(DARPA)MTO under the auspices of Dr.Jack Judy through the Space and Naval Warfare Systems Center,Pacific Grant/Contract No.N66001-11-1-4014.
文摘Extracellular matrix(ECM)-based implantable neural electrodes(NEs)were achieved using a microfabrication strategy on naturalsubstrate-based organic materials.The ECM-based design minimized the introduction of non-natural products into the brain.Further,it rendered the implants sufficiently rigid for penetration into the target brain region and allowed them subsequently to soften to match the elastic modulus of brain tissue upon exposure to physiological conditions,thereby reducing inflammatory strain fields in the tissue.Preliminary studies suggested that ECM-NEs produce a reduced inflammatory response compared with inorganic rigid and flexible approaches.In vivo intracortical recordings from the rat motor cortex illustrate one mode of use for these ECM-NEs.