期刊文献+
共找到1,163篇文章
< 1 2 59 >
每页显示 20 50 100
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal 被引量:1
1
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 Dissimilar metal weld Nickel-based weld metal Ferritic heat resistant steel INTERFACE Creep strain MICROSTRUCTURE failure mechanism Creep life
下载PDF
SOCS3 Expression Correlates with Severity of Inflammation in Mouse Hepatitis Virus Strain 3-induced Acute Liver Failure and HBV-ACLF 被引量:9
2
作者 李咏 韩梅芳 +11 位作者 李维娜 师爱超 张元亚 王宏艳 王发席 李兰 吴婷 丁琳 陈韬 严伟明 罗小平 宁琴 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2014年第3期348-353,共6页
Summary: Recently, suppressor of cytokine signaling-3 (SOCS3) has been shown to be an inducible endogenous negative regulator of Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway ... Summary: Recently, suppressor of cytokine signaling-3 (SOCS3) has been shown to be an inducible endogenous negative regulator of Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway which is relevant in inflammatory response, while its functions in acute liver failure and HBV-induced acute-on-chronic liver failure (HBV-ACLF) have not been fully elucidated. In this study, we explored the role of SOCS3 in the development of mouse hepatitis virus strain 3 (MHV-3)-induced acute liver failure and its expression in liver and peripheral blood mononuclear cells (PBMCs) of patients with HBV-ACLF. Inflammation-related gene expression was detected by real-time PCR, immtmohistochemistry and Western blotting. The correlation between SOCS3 level and liver injury was studied. Our results showed that the SOCS3 expression was significantly elevated in both the liver tissue and PBMCs from patients with HBV-ACLF compared to mild chronic hepatitis B (CHB). Moreover, a time course study showed that SOCS3 level was increased remarkably in the liver of BALB/cJ mice at 72 h post-infection. Pro-inflammatory cytokines, interleukin (IL)-1 β, IL-6, and tumor necrosis factor (TNF)-α, were also increased significantly at 72 h post-infection. There was a close correlation between hepatic SOCS3 level and IL-6, and the severity of liver injury defined by alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, respectively. These data suggested that SOCS3 may play a pivotal role in the pathogenesis of MHV-3-induced acute liver failure and HBV-ACLF. 展开更多
关键词 suppressors of cytokine signaling-3 HBV-induced acute-on-chronic liver failure mouse hepatitis virus strain 3 fulminant liver failure BALB/cJ mice
下载PDF
Dynamic compressive property and failure behavior of extruded Mg-Gd-Y alloy under high temperatures and high strain rates 被引量:10
3
作者 Jin-cheng Yu Zheng Liu +1 位作者 Yang Dong Zhi Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第2期134-141,共8页
For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical prope... For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature. 展开更多
关键词 Extruded Mg-Gd-Y magnesium alloy Split Hopkinson Pressure Bar Dynamic compressive property failure behavior High strain rates High temperature
下载PDF
Failure Analysis of Dissimilar Metal Welds between Ferritic Heat Resistant Steels and Austenitic Stainless Steels in Power Plant
4
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期306-326,共21页
This study analysed the failure of dissimilar metal welds(DMWs)between ferritic heat resistant steels and austenitic stainless steels and investigated its influencing factors by means of numerical simulation,microstru... This study analysed the failure of dissimilar metal welds(DMWs)between ferritic heat resistant steels and austenitic stainless steels and investigated its influencing factors by means of numerical simulation,microstructure characterization and mechanical property test.Under the long-term high-temperature service condition in practical power plant,the DMW failure mode was along the interface between nickel-based weld metal(WM)and ferritic heat resistant steel,and the failure mechanism was stress/strain concentration,microstructure degradation and oxidation coupling acting on the interface.The numerical simulation results show that interface stress/strain concentration was due to the differences in coefficient of thermal expansion and creep strength,and the degree of stress/strain concentration was related to service time.The ferrite band formed at the WM/ferritic steel interface was prone to cracking,attracting the fracture along the interface.The interface crack allowed oxidation to develop along the WM/ferritic steel interface.During long-term service,the interface stress/strain concentration,microstructure and oxidation all evolved,which synergistically promoted interface failure of DMW.However,only under the long-term service of low stress conditions could trigger the interface failure of DMW.Meanwhile,long-term service would reduce the mechanical strength and plasticity of DMW. 展开更多
关键词 Dissimilar metal weld failure INTERFACE Stress/strain concentration MICROSTRUCTURE OXIDATION
下载PDF
Strain concentration caused by the closed end contributes to cartridge case failure at the bottom 被引量:2
5
作者 Song Cai Jie Feng +3 位作者 Hui Xu Kun Liu Zhong-xin Li Zhi-lin Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第6期1151-1159,共9页
Ruptures at the bottom of cartridges are a common cause of failure of ammunitions,which directly threatens the safety of weapons and shooters.Based on plastic tube theory,this study analyses the radial and axial defor... Ruptures at the bottom of cartridges are a common cause of failure of ammunitions,which directly threatens the safety of weapons and shooters.Based on plastic tube theory,this study analyses the radial and axial deformation of a cartridge,considering the radial constraint of the closed end at the bottom of the cartridge.Owing to the influence of the closed end,the bottom of a cartridge does not establish complete contact with the chamber.Owing to strain concentration in the non-contact area,this area is more amenable to the occurrence of cartridge rupture.This theory predicts the location of the fracture more accurately than the traditional theory.The maximum axial deformation of a cartridge comprises bending and friction deformation.The maximum strain at the bottom of the cartridge increased by 135%owing to the introduction of bending strain caused by the closed end.The strain distribution of a cartridge was measured using digital image correlation technology,and the measured result was consistent with the predicted results of the bending deformation theory and rupture case.The effects of wall thickness,radial clearance,friction coefficient,and axial clearance on the axial deformation of the cylinder were studied.Increasing the wall thickness and reducing radial clearance were found to reduce bending deformation;furthermore,lubrication and reduction in axial clearance reduce frictional deformation,which in turn reduce cartridge rupture. 展开更多
关键词 Closed end Cartridge case failures strain concentration Bending deformation
下载PDF
Effect of confining pressure on deformation and failure of rock at higher strain rate 被引量:1
6
作者 王学滨 潘一山 《Journal of Coal Science & Engineering(China)》 2005年第2期32-36,共5页
Influence of confining pressure from 0 to 28 MPa, which acts on the two lateral edges of rock specimen in plane strain compression, on the shear failure processes and patterns as well as on the macroscopically mechani... Influence of confining pressure from 0 to 28 MPa, which acts on the two lateral edges of rock specimen in plane strain compression, on the shear failure processes and patterns as well as on the macroscopically mechanical responses were numerically modeled by use of FLAC. A material imperfection with lower strength in comparison with the intact rock, which is close to the lower-left corner of the specimen, was prescribed. In elastic stage, the adopted constitutive relation of rock was linear elastic; in strain-softening stage, a composite Mohr-Coulomb criterion with tension cut-off and a post-peak linear constitutive relation were adopted. The numerical results show that with an increase of confining pressure the peak strength of axial stress-axial strain curve and the corresponding axial strain linearly increase; the residual strength and the stress drop from the peak strength to the residual strength increase; the failure modes of rock transform form the multiple shear bands close to the loading end of the specimen (confining pressure=0-0.1 MPa), to the conjugate shear bands (0.5-2.0 MPa), and then to the single shear band (4-28 MPa). Once the tip of the band reaches the loading end of the specimen, the direction of the band changes so that the reflection of the band occurs. At higher confining pressure, the new-formed shear band does not intersect the imperfection, bringing extreme difficulties in prediction of the failure of rock structure, such as rock burst. The present results enhance the understanding of the shear failure processes and patterns of rock specimen in higher confining pressure and higher loading strain rate. 展开更多
关键词 confining pressure shear failure shear strain localization strength stress-strain curve rock burst
下载PDF
Fatigue Failure of Notched Specimen—A Strain-Life Approach
7
作者 Bikash Joadder Jagabandhu Shit +1 位作者 Sanjib Acharyya Sankar Dhar 《Materials Sciences and Applications》 2011年第12期1730-1740,共11页
Failure cycles of notched round specimens under strain controlled cyclic loading are predicted using strain—life relations obtained from experiment for plain fatigue round specimens. For notched specimens, maximum st... Failure cycles of notched round specimens under strain controlled cyclic loading are predicted using strain—life relations obtained from experiment for plain fatigue round specimens. For notched specimens, maximum strain occurs at notch root and is different from applied controlled strain. The maximum strain is computed by appropriate Finite element analysis using the FE software ABAQUS. FE model and material parameters are validated by comparing the FE results and experimental results of LCF tests of round specimens. This value of maximum strain is used for prediction of failure cycles. Prediction is compared with the experimental results. The results show good matching. 展开更多
关键词 strain Life Equation failure CYCLE Notched SPECIMEN LCF CYCLIC PLASTICITY
下载PDF
Virtual strain loading method for low temperature cohesive failure of asphalt binder
8
作者 Heyang Ding Hainian Wang +4 位作者 Ziye Ma Zhen Leng Ponan Feng Tangjie Wang Xin Qu 《Journal of Road Engineering》 2023年第3期300-314,共15页
Cohesive failure is one of the primary reasons for low-temperature cracking in asphalt pavements.Understanding the micro-level mechanism is crucial for comprehending cohesive failure behavior.However,previous literatu... Cohesive failure is one of the primary reasons for low-temperature cracking in asphalt pavements.Understanding the micro-level mechanism is crucial for comprehending cohesive failure behavior.However,previous literature has not fully reported on this aspect.Moreover,there has been insufficient attention given to the correlation between macroscopic and microscopic failures.To address these issues,this study employed molecular dynamics simulation to investigate the low-temperature tensile behavior of asphalt binder.By applying virtual strain,the separation work during asphalt binder tensile failure was calculated.Additionally,a correlation between macroscopic and microscopic tensile behaviors was established.Specifically,a quadrilateral asphalt binder model was generated based on SARA fractions.By applying various combinations of virtual strain loading,the separation work at tensile failure was determined.Furthermore,the impact of strain loading combinations on separation work was analyzed.Normalization was employed to establish the correlation between macroscopic and microscopic tensile behaviors.The results indicated that thermodynamic and classical mechanical indicators validated the reliability of the tetragonal asphalt binder model.The strain loading combination consists of strain rate and loading number.All strain loading combinations exhibited the similar tensile failure characteristic.The critical separation strain was hardly influenced by strain loading combination.However,increasing strain rate significantly enhanced both the maximum traction stress and separation work of the asphalt binder.An increment in the loading number led to a decrease in separation work.The virtual strain combination of 0.5%-80 provided a more accurate representation of the actual asphalt's tensile behavior trend. 展开更多
关键词 Asphalt binder Cohesive failure Virtual strain load Molecular dynamics Maximum cohesive stress
下载PDF
Considerations of rock dilation on modeling failure and deformation of hard rocks-a case study of the mine-by test tunnel in Canada 被引量:9
9
作者 Xingguang Zhao Meifeng Cai MCai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第4期338-349,共12页
For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely t... For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely to occur in the final process during the formation of shear bands, breakouts or V-shaped notches close to the excavation boundaries. However, the perfectly elastoplastic, strain-softening and elasto-brittle-plastic models cannot reasonably describe the brittle failure of hard rock tunnels under high in-situ stress conditions. These approaches often underestimate the depth of failure and overestimate the lateral extent of failure near the excavation. Based on a practical case of the mine-by test tunnel at an underground research laboratory (URL) in Canada, the influence of rock mass dilation on the depth and extent of failure and deformation is investigated using a calibrated cohesion weakening and frictional strengthening (CWFS) model. It can be found that, when modeling brittle failure of rock masses, the calibrated CWFS model with a constant dilation angle can capture the depth and extent of stress-induced brittle failure in hard rocks at a low confinement if the stress path is correctly represented, as demonstrated by the failure shape observed in the tunnel. However, using a constant dilation angle cannot simulate the nonlinear deformation behavior near the excavation boundary accurately because the dependence of rock mass dilation on confinement and plastic shear strain is not considered. It is illustrated from the numerical simulations that the proposed plastic shear strain and confinement-dependent dilation angle model in combination with the calibrated CWFS model implemented in FLAC can reasonably reveal both rock mass failure and displacement distribution in vicinity of the excavation simultaneously. The simulation results are in good agreement with the field observations and displacement measurement data. 展开更多
关键词 hard rocks brittle failure deformation dilation angle model confinement plastic shear strain mine-by test tunnel
下载PDF
Mechanical behavior and failure mechanism of polyurea nanocomposites under quasi-static and dynamic compressive loading 被引量:8
10
作者 Qiang Liu Peng-wan Chen +4 位作者 Yan-song Guo Jian-jun Su Lu Han Ali Arab Jian-fei Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期495-504,共10页
Polyurea is an elastomeric material that can be applied to enhance the protection ability of structures under blast and impact loading.In order to study the compressive mechanical properties of SiC/polyurea nanocompos... Polyurea is an elastomeric material that can be applied to enhance the protection ability of structures under blast and impact loading.In order to study the compressive mechanical properties of SiC/polyurea nanocomposites under quasi-static and dynamic loading,a universal testing machine and split Hopkinson pressure bar(SHPB)apparatus were used respectively.The stress-strain curves were obtained on polyurea and its composites at strain rates of 0.001e8000 s1.The results of the experiment suggested that increase in the strain rates led to the rise of the flow stress,compressive strength,strain rate sensitivity and strain energy.This indicates that all of the presented materials were dependent on strain rate.Moreover,these mechanical characters were enhanced by incorporating a small amount of SiC into polyurea matrix.The relation between yield stress and strain rates were established using the power law functions.Finally,in order to investigate the fracture surfaces and inside information of failed specimens,scanning electron microscopy(SEM)and micro X-ray computed tomography(micro-CT)were used respectively.Multiple voids,crazes,micro-cracks and cracking were observed in fracture surfaces.On the other hand,the cracking propagation was found in the micro-CT slice images.It is essential to understand the deformation and failure mechanisms in all the polyurea materials. 展开更多
关键词 Polyurea nanocomposites Mechanical properties strain rate MICRO-CT failure
下载PDF
Phenomena and theoretical analysis for the failure of brittle rocks 被引量:5
11
作者 Faquan Wu Jie Wu Shengwen Qi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第4期331-337,共7页
Rockburst, an unstable failure of brittle rocks, has been greatly concerned in rock mechanics and rock engineering for more than 100 years. The current understanding on the mechanical mechanism of rockburst is based o... Rockburst, an unstable failure of brittle rocks, has been greatly concerned in rock mechanics and rock engineering for more than 100 years. The current understanding on the mechanical mechanism of rockburst is based on the Coulomb theory, i.e. compressive-shear failure theory. This paper illustrates a series of tensile and tensile-shear fracture phenomena of rockburst, and proposes a methodology for the analysis of fracture mode and its energy dissipation process based on Griffith theory. It is believed that: (1) the fracture modes of rockburst should include compressive-shear, tensile-shear and pure tensile failures; (2) the rupture angle of rock mass decreases with the occurrence of tensile stress; (3) the proportion of kinetic energy in the released strain energy from a rockburst may be much larger than that transferred into surface energy; and (4) the understanding on the tensile and tensile-shear failure modes of rockburst may change the basic thinking of rockburst control, i.e. from keeping the reduction in initial compressive stress σ3 to restricting the creation of secondary tensile stress. 展开更多
关键词 failure of brittle rock tensile-shear fracture Griffith criterion released strain energy kinetic energy
下载PDF
Analysis of progressive failure of pillar and instabilitycriterion based on gradient-dependent plasticity 被引量:8
12
作者 王学滨 《Journal of Central South University of Technology》 2004年第4期445-450,共6页
A mechanical model for strain softening pillar is proposed considering the characteristics of progressive shear failure and strain localization. The pillar undergoes elastic, strain softening and slabbing stages. In t... A mechanical model for strain softening pillar is proposed considering the characteristics of progressive shear failure and strain localization. The pillar undergoes elastic, strain softening and slabbing stages. In the elastic stage, vertical compressive stress and deformation at upper end of pillar are uniform, while in the strain softening stage there appears nonuniform due to occurrence of shear bands, leading to the decrease of load-carrying capacity. In addition, the size of failure zone increases in the strain softening stage and reaches its maximum value when slabbing begins. In the latter two stages, the size of elastic core always decreases. In the slabbing stage, the size of failure zone remains a constant and the pillar becomes thinner. Total deformation of the pillar is derived by linearly elastic Hookes law and gradient-dependent plasticity where thickness of localization band is determined according to the characteristic length. Post-peak stiffness is proposed according to analytical solution of averaged compressive stress-average deformation curve. Instability criterion of the pillar and roof strata system is proposed analytically (using) instability condition given by Salamon. It is found that the constitutive parameters of material of pillar, the geometrical size of pillar and the number of shear bands influence the stability of the system; stress gradient controls the starting time of slabbing, however it has no influence on the post-peak stiffness of the pillar. 展开更多
关键词 instability criterion strain softening pillar strain localization shear band progressive failure (slabbing ) rock burst
下载PDF
Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure 被引量:6
13
作者 李夕兵 洪亮 +2 位作者 尹土兵 周子龙 叶洲元 《Journal of Central South University of Technology》 EI 2008年第2期218-223,共6页
In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,... In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,new SHPB setups with different elastic bar's diameters of 22,36,50 and 75 mm were constructed.The tests were carried out on these setups at different loading rates,and the specimens had the same diameter of elastic bars and same ratio of length to diameter.The test results show that the larger the elastic bar's diameter is,the less the loading rate is needed to cause specimen failure,they show good power relationship,and that under the same strain rate loading,specimens are broken more seriously with larger diameter SHPB setup than with smaller one. 展开更多
关键词 rock failure Hopkinson pressure bar DIAMETER minimum loading rate medium strain rate
下载PDF
Evaluation of Left Ventricular Function by Three-Dimensional Speckle-Tracking Echocardiography in Patients with Chronic Kidney Failure 被引量:4
14
作者 Yu-bo WANG Hui HUANG +4 位作者 Shan LIN Mei-jia HAO Lu-jiao HE Kun LIU Xiao-jun BI 《Current Medical Science》 SCIE CAS 2022年第4期895-901,共7页
Objective:To establish a quantitative evaluation of the left ventricle's systolic function in patients with chronic kidney failure(CKF)by three-dimensional speckle-tracking echocardiography.Methods:Two-dimensional... Objective:To establish a quantitative evaluation of the left ventricle's systolic function in patients with chronic kidney failure(CKF)by three-dimensional speckle-tracking echocardiography.Methods:Two-dimensional and three-dimensional transthoracic echocardiography was performed on 30 patients with CKF.The ejection fraction,mass and global peak longitudinal strain,global circumferential strain,global area strain,and global radial strain of the left ventricle were calculated.Results:The ejection fraction,mass and global peak longitudinal strain(GLS),global circumferential strain(GCS),global area strain(GAS),and global radial strain(GRS)in the CKF group were significantly lower than those in the control group.Simultaneously,the GLS,GCS,GAS and GRS were well correlated with the ejection fraction.For patients with normal ejection fraction in the CKF group,the GLS,GCS,GAS and GRS were lower than those in the control group,while the left ventricular mass was significantly higher in CKF patients than in the control group.For patients with hypertension in the CKF group,ejection fraction,GLS,GCS,GAS and GRS calculated using three-dimensional echocardiography were significantly lower than those in patients with normal blood pressure;however,the myocardial mass was higher.Conclusions:The parameters(GLS,GCS,GAS and GRS)calculated using three-dimensional speckle-tracking software were lower in the CKF group.Simultaneously,the left ventricular mass was higher in CFK patients than in the control group,thus showing that the myocardial contraction function was impaired and that myocardial remodeling had occurred. 展开更多
关键词 three-dimensional speckle-tracking echocardiography left ventricle ejection fraction strain chronic kidney failure
下载PDF
Correlating solder interconnects failure with PCBs response during board level drop impact test
15
作者 刘洋 孙凤莲 《China Welding》 EI CAS 2012年第2期7-12,共6页
Solder interconnects reliability during drop impact is important for portable electronic products. In this paper, board level drop impact tests were conducted according to the standard of the Joint Electronic Devices ... Solder interconnects reliability during drop impact is important for portable electronic products. In this paper, board level drop impact tests were conducted according to the standard of the Joint Electronic Devices Engineering Council (JEDEC). Solder failure drop numbers were recorded and solder failure analyses were carried out. A high speed data acquisition system was constructed to measure the printed cireuit board ( PCt~ ) dynamic response during the impact. Measured response data were used to characterize the loading feature of the impact. The relatioT~~hip between solder failure features and PCB dynamic response was correlated. Solder failure mechanisms were discussed. The correlation of PCB strain data with the solder failure life indicates that the solder damage accumulated during drop impact is dependent on both strain amplitude and modes contribution of the PCB. Compared with high strain amplitude loading condition, lower strain amplitude with higher mode can even produce more severe damage to the solder interconnects. Repeated impact loadings to the solder induce the combination failure mechanism of both impact and fatigue. Failure analyses results provide convincing verification for the complexity of the failure mechanisms. 展开更多
关键词 SOLDER printed circuit board drop impact strain failure
下载PDF
A Universal Reduced Rupture Creep Approach for Failure Behavior of Aged Glass Polymers from the Rupture Creep Compliance by the Unified Master Prediction of Long Term Short Term Test of Curved Extrapolation
16
作者 Guang-jun Song Da-ming Wu +2 位作者 Wei-yue Song Ming-shi Song Gui-xian Hu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第5期552-562,I0003,共12页
The prediction of long term failure behaviors and lifetime of aged glass polymers from the short term tests of reduced rupture creep compliance (or strain) is one of difficult problems in polymer science and enginee... The prediction of long term failure behaviors and lifetime of aged glass polymers from the short term tests of reduced rupture creep compliance (or strain) is one of difficult problems in polymer science and engineering. A new "universal reduced rupture creep approach" with exact theoretical analysis and computations is proposed in this work. Failure by creep for polymeric material is an important problem to be addressed in the engineering. A universal equation on reduced extensional failure creep compliance for PMMA has been derived. It is successful in relating the reduced extensional failure creep compliance with aging time, temperature, levels of stress, the average growth dimensional number and the parameter in K-W-W function. Based on the universal equation, a method for the prediction of failure behavior, failure strain criterion, failure time of PMMA has been developed which is named as a universal "reduced rupture creep approach". The results show that the predicted failure strain and failure time of PMMA at different aging times for different levels of stress are all in agreement with those obtained directly from experiments, and the proposed method is reliable and practical. The dependences of reduced extensional failure creep compliance on the conditions of aging time, failure creep stress, the structure of fluidized-domain constituent chains are discussed. The shifting factor, exponent for time-stress superposition at different levels of stress and the shifting factor, exponent for time-time aging superposition at different aging time are theoretically defined respectively. 展开更多
关键词 Reduced extensional failure creep compliance Extensional failure Predictionof failure strain and time PMMA Shifting factor Shifting exponent
下载PDF
FAILURE MODE AND CONSTITUTIVE MODEL OF PLAIN HIGH-STRENGTH HIGH-PERFORMANCE CONCRETE UNDER BIAXIAL COMPRESSION AFTER EXPOSURE TO HIGH TEMPERATURES 被引量:2
17
作者 Zhenjun He Yupu Song 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第2期149-159,共11页
An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for char... An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for characterizing the strength and deformation behavior at two strength levels of HSHPC at 7 different stress ratios including a=σs : σ3=0.00:-1,-0.20:-1,-0.30 : -1,-0.40:-1,-0.50:-1,-0.75:-1,-1.00:-1, after the exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, and using a large static-dynamic true triaxial machine. The biaxial tests were performed on 100 mm×100 mm×100 mm cubic specimens, and friction-reducing pads were used consisting of three layers of plastic membrane with glycerine in-between for the compressive loading plane. Based on the experimental results, failure modes of HSHPC specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured; and the influence of the temperature and stress ratios on them was also analyzed. The experimental results showed that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease dramatically with the increase of temperature. The ratio of the biaxial to its uniaxial compressive strength depends on the stress ratios and brittleness-stiffness of HSHPC after exposure to different temperature levels. Comparison of the stress-strain results obtained from the theoretical model and the experimental data indicates good agreement. 展开更多
关键词 high-strength high-performance concrete (HSHPC) high temperatures uniaxial biaxial compressive strength failure criterion stress-strain relationship
下载PDF
Numerical investigation of the failure mechanism of cubic concrete specimens in SHPB tests
18
作者 Mei Li Hong Hao +1 位作者 Jian Cui Yi-fei Hao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第1期1-11,共11页
Cylindrical specimens are commonly used in Split Hopkinson pressure bar(SHPB)tests to study the uniaxial dynamic properties of concrete-like materials.In recent years,true tri-axial SHPB equipment has also been develo... Cylindrical specimens are commonly used in Split Hopkinson pressure bar(SHPB)tests to study the uniaxial dynamic properties of concrete-like materials.In recent years,true tri-axial SHPB equipment has also been developed or is under development to investigate the material dynamic properties under tri-axial impact loads.For such tests,cubic specimens are needed.It is well understood that static material strength obtained from cylinder and cube specimens are different.Conversion factors are obtained and adopted in some guidelines to convert the material streng th obtained from the two types of specimens.Previous uniaxial impact tests have also demonstrated that the failure mode and the strain rate effect of cubic specimens are very different from that of cylindrical ones.However,the mechanical background of these findings is unclear.As an extension of the previous laboratory study,this study performs numerical SHPB tests of cubic and cylindrical concrete specimens subjected to uniaxial impact load with the validated numerical model.The stress states of cubic specimens in relation to its failure mode under different strain rates is analyzed and compared with cylindrical specimens.The detailed analyses of the numerical simulation results show that the lateral inertial confinement of the cylindrical specimen is higher than that of the cubic specimen under the same strain rates.For cubic specimen,the corners aremore severely damaged because of the lower lateral confinement and the occurrence of the tensile radial stress which is not observed in cylindrical specimens.These results explain why the dynamic material strengths obtained from the two types of specimens are different and are strain rate dependent.Based on the simulation results,an empirical formula of conversion factor as a function of strain rate is proposed,which supplements the traditional conversion factor for quasi-static material strength.It can be used for transforming the dynamic compressive strength from cylinders to cubes obtained from impact tests at different strain rates. 展开更多
关键词 CONCRETE Lateral inertial confinement Shape effet Dynamic failure mechanism strain rate
下载PDF
Experimental and numerical study on dynamic mechanical behaviors of shale under true triaxial compression at high strain rate
19
作者 Xiaoping Zhou Linyuan Han +1 位作者 Jing Bi Yundong Shou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期149-165,共17页
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ... High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data. 展开更多
关键词 Dynamic behaviors True triaxial compression High strain rates Dynamic failure mechanism PFC3D-FLAC3D coupled method
下载PDF
Experimental studies and failure mechanisms of strain andfault-slip rockburst:A review
20
作者 ZHANG Qing-he WEI Chun-xu +3 位作者 YUAN Liang LIANG Zhi-wei YANG Fa-wang WANG Xiao-rui 《Journal of Central South University》 SCIE EI CAS 2024年第10期3741-3781,共41页
In recent years,rockburst have gained significant attention as a crucial topic in rock engineering.Strain andfault-slip rockburst are two common types that occur frequently and cause substantial damage.The objective o... In recent years,rockburst have gained significant attention as a crucial topic in rock engineering.Strain andfault-slip rockburst are two common types that occur frequently and cause substantial damage.The objective of thisreview is to conduct a comprehensive study on the experiments and failure mechanisms of strain and fault-slip rockburst.Firstly,the article analyzes the evolving trends in experimental research on rockburst in the past decade,highlightingmechanical properties and failure modes as the primary research focuses in understanding rockburst mechanisms.Subsequently,it provides an overview of the experimental techniques and methods employed for studying both types ofrockburst.Then,with a focus on the mechanical properties and failure modes,the article conducts an extensive analysisof the failure mechanisms associated with strain and fault-slip rockburst.By analyzing experimental data and observingthe failure characteristics of samples,it discusses the variations and common features exhibited by these two types ofrockburst under various test conditions.This analysis is of paramount importance in revealing the causes of rockburstformation and development,as well as in predicting rockburst trends and assessing associated risks.Lastly,thelimitations of current rockburst experiments and future research directions are discussed,followed by a comprehensivesummary of the entire article. 展开更多
关键词 strain rockburst fault-slip rockburst experimental techniques experimental methods failure mechanisms
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部