An increase in luminance of a polymer light-emitting diode(PLED) was obtained by fabricating a graded doping structure using a vacuum spray method. The small electron transport molecule, Tris(8-hydroxyquinolinato) alu...An increase in luminance of a polymer light-emitting diode(PLED) was obtained by fabricating a graded doping structure using a vacuum spray method. The small electron transport molecule, Tris(8-hydroxyquinolinato) aluminum(III)(Alq3), was graded dispersed along the film in the direction of growth in the hole transport polymer poly(3-hexylthiophene-2,5-diyl)(P3HT, regiorandom) layer of the PLED, despite being dissolved in the same organic solvent as the polymer. The PLED reported here, which is composed of a graded structure, emitted brighter light than PLEDs composed of pure polymer or of a blend of active layers prepared by spin coating and/or vacuum spray methods.展开更多
基金supported by the Industrial Technology Research Grant Program from the New Energy and Industrial Technology Development Organization(NEDO)of Japan
文摘An increase in luminance of a polymer light-emitting diode(PLED) was obtained by fabricating a graded doping structure using a vacuum spray method. The small electron transport molecule, Tris(8-hydroxyquinolinato) aluminum(III)(Alq3), was graded dispersed along the film in the direction of growth in the hole transport polymer poly(3-hexylthiophene-2,5-diyl)(P3HT, regiorandom) layer of the PLED, despite being dissolved in the same organic solvent as the polymer. The PLED reported here, which is composed of a graded structure, emitted brighter light than PLEDs composed of pure polymer or of a blend of active layers prepared by spin coating and/or vacuum spray methods.