期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Role of processing parameters on relative density,microstructure and mechanical properties of selective laser melted titanium alloy
1
作者 Tian-yu Liu Bo-liang Liu +4 位作者 Jiao-jiao Cheng Shi-bing Liu Kun Shi Hong-yu Liu Jun Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第6期676-684,共9页
The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6A... The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6Al-2Zr-1Mo-1V alloy were investigated in this work.The result shows that laser power acts a dominant role in determining the relative density in comparison with scanning speed and hatch space.The optimal SLM process window for fabricating relative density>99%samples is located in the energy density range of 34.72 J·mm^(-3)to 52.08 J·mm^(-3),where the laser power range is between 125 W and 175 W.An upward trend is found in the micro-hardness as the energy density is increased.The optimum SLM processing parameters of Ti-6Al-2Zr-1Mo-1V alloy are:laser power of 150 W,scanning speed of 1,600 mm·s^(-1),hatch space of 0.08 mm,and layer thickness of 0.03 mm.The highest ultimate tensile strength,yield strength,and ductility under the optimum processing parameter are achieved,which are 1,205 MPa,1,099 MPa,and 8%,respectively.The results of this study can be used to guide SLM production Ti-6Al-2Zr-1Mo-1V alloy parts. 展开更多
关键词 selective laser melting processing parameter Ti-6Al-2Zr-1Mo-1v titanium alloy relative density MICROSTRUCTURE mechanical properties
下载PDF
Effect of solution plus aging heat treatment on microstructural evolution and mechanical properties of near-β titanium alloy 被引量:23
2
作者 Chuan WU Mei ZHAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期997-1006,共10页
The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show ... The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show that the volume fraction of the primary α(αp) phase decreases with the increase of solution temperature, and the length of the secondary α phase (αs) decreases while its width increases with the increase of aging temperature. Yield and tensile strengths decrease with the increase of solution temperature, while increase with the increase of aging temperature. A good balance of tensile strength and ductility of the alloy is obtained under solution of 800℃ for 2 h plus aging of 640℃ for 8 h, in which the tensile strength is 1434 MPa and the elongation is 7.7%. The coarsening αs phase makes crack propagation paths deflected and tortuous, which increases the crack propagation resistance and improves the ductility and fracture toughness. 展开更多
关键词 Ti.5Al.5Mo.5v.3Cr.1Zr titanium alloy hot treatment SOLUTION AGING microstructural evolution mechanical properties fracture mechanism
下载PDF
Thermomechanical Behavior of Ti-6Al-4V Alloy 被引量:1
3
作者 K.Farmanesh A.Najafi-Zadeh 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第3期217-220,共4页
Ti-6AI-4V, among the Ti alloys, is the most widely used. In the present work, the behavior of Ti-6AI-4V alloy has been investigated by the uniaxial hot isothermal compression tests and a series of dilatometric experim... Ti-6AI-4V, among the Ti alloys, is the most widely used. In the present work, the behavior of Ti-6AI-4V alloy has been investigated by the uniaxial hot isothermal compression tests and a series of dilatometric experiments were also carried out to determine the transformation temperatures at different cooling rates. Specimens for hot compression tests were homogenized at 1050℃ for 10 min and then quickly cooled to different straining temperatures from 1050 to 850℃. Cooling rates were chosen fast enough to prevent high temperature transformation during cooling. Compression tests were conducted at temperatures from 1050 to 850℃ in steps of 50℃ at constant true strain rates of 10-3 or 10-2 s-1. The apparent activation energy for compression in two-phase region was calculated 420 kJ·mol-1. Partial globularization of a phase was observed in the specimen deformed at low strain rates and at temperatures near the transformation zone and annealed after deformation. 展开更多
关键词 titanium alloy Hot pressing TI-6A1-4v Dilatometry
下载PDF
Dynamic response and plastic deformation behavior of Ti–5Al–2.5Sn ELI and Ti–8Al–1Mo–1V alloys under high-strain rate 被引量:3
4
作者 Yan-Ling Wang Song-Xiao Hui +3 位作者 Rui Liu Wen-Jun Ye Yang Yu Ravil Kayumov 《Rare Metals》 SCIE EI CAS CSCD 2014年第2期127-133,共7页
Split Hopkinson pressure bar test system was used to investigate the plastic deformation behavior and dynamic response character of a-type Ti–5Al–2.5Sn ELI and near a-type Ti–8Al–1Mo–1V titanium alloy when subjec... Split Hopkinson pressure bar test system was used to investigate the plastic deformation behavior and dynamic response character of a-type Ti–5Al–2.5Sn ELI and near a-type Ti–8Al–1Mo–1V titanium alloy when subjected to dynamic loading. In the present work, stress–strain curves at strain rate from 1.5 9 103to 5.0 9 103s-1were analyzed, and optical microscope(OM) was used to reveal adiabatic shearing behavior of recovered samples. Results show that both the two alloys manifest significant strain hardening effects. Critical damage strain rate of the two alloys is about 4.3 9 103s-1, under which the impact absorbs energy of Ti–5Al–2.5Sn ELI and Ti–8Al–1Mo–1V are 560 and 470 MJ m-3, respectively. Both of them fracture along the maximum shearing strength orientation, an angle of 45° to the compression axis. No adiabatic shear band(ASB) is found in Ti–5Al–2.5Sn ELI alloy, whereas several ASBs with different widths exist without regular direction in Ti–8Al–1Mo–1V alloy. 展开更多
关键词 titanium alloy Ti–5Al–2.5Sn ELI Ti–8Al– 1Mo–1v High-strain rate Adiabatic shear band
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部