Ti0.5Al0.5N coatings were deposited on TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) and silicon substrates using a cathode arc ion-plating system.The microstructure, composition, phase structure, and oxidation-resistance of the...Ti0.5Al0.5N coatings were deposited on TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) and silicon substrates using a cathode arc ion-plating system.The microstructure, composition, phase structure, and oxidation-resistance of the alloys and nitride coatings were investigated by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, Auger electron spectroscopy, and thermal analyzer.The results show that the oxidation resistance of the titanium alloy is relatively limited;the compound structures of Ti mixed with Al oxides are formed during the heating process.The phases of the Ti0.5Al0.5N coatings are composed of a TiN solid solution phase.The oxidation kinetics obeys the parabolic law.During the oxidation process, the selective oxidation of Al occurs, thus protecting the underlying coating and substrate.展开更多
文摘Ti0.5Al0.5N coatings were deposited on TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) and silicon substrates using a cathode arc ion-plating system.The microstructure, composition, phase structure, and oxidation-resistance of the alloys and nitride coatings were investigated by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, Auger electron spectroscopy, and thermal analyzer.The results show that the oxidation resistance of the titanium alloy is relatively limited;the compound structures of Ti mixed with Al oxides are formed during the heating process.The phases of the Ti0.5Al0.5N coatings are composed of a TiN solid solution phase.The oxidation kinetics obeys the parabolic law.During the oxidation process, the selective oxidation of Al occurs, thus protecting the underlying coating and substrate.