期刊文献+
共找到3,736篇文章
< 1 2 187 >
每页显示 20 50 100
Ultrahigh strength and improved electrical conductivity in an aging strengthened copper alloy processed by combination of equal channel angular pressing and thermomechanical treatment
1
作者 WANG Xu LI Zhou +1 位作者 MENG Xiang-peng XIAO Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1823-1837,共15页
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper... In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample. 展开更多
关键词 Cu-Ti alloy equal channel angular pressing ROLLING aging treatment high strength
下载PDF
Product Development of High Strength and Toughness Spring Flat Steel
2
作者 Jianxin Wang Chunhui Zhang 《Frontiers of Metallurgical Industry》 2024年第1期15-18,共4页
With the continuous development of mechanical industry,higher requirements are put forward for the comprehensive properties of spring steel.The chemical composition and production process of spring flat steel are desi... With the continuous development of mechanical industry,higher requirements are put forward for the comprehensive properties of spring steel.The chemical composition and production process of spring flat steel are designed to meet the requirements of high strength and high toughness of spring flat steel,through the test,the product surface quality and internal quality all meet the national standards,the performance indicators to meet user requirements. 展开更多
关键词 spring flat steel mechanical properties high strength high toughness
下载PDF
Designing new low alloyed Mg-RE alloys with high strength and ductility via high-speed extrusion 被引量:6
3
作者 Jinshu Xie Zhi Zhang +6 位作者 Shujuan Liu Jinghuai Zhang Jun Wang Yuying He Liwei Lu Yunlei Jiao Ruizhi Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期82-91,共10页
Two new low-alloyed Mg-2RE-0.8Mn-0.6Ca-0.5Zn(wt%,RE=Sm or Y)alloys are developed,which can be produced on an in-dustrial scale via relatively high-speed extrusion.These two alloys are not only comparable to commercial... Two new low-alloyed Mg-2RE-0.8Mn-0.6Ca-0.5Zn(wt%,RE=Sm or Y)alloys are developed,which can be produced on an in-dustrial scale via relatively high-speed extrusion.These two alloys are not only comparable to commercial AZ31 alloy in extrudability,but also have superior mechanical properties,especially in terms of yield strength(YS).The excellent extrudability is related to less coarse second-phase particles and high initial melting point of the two as-cast alloys.The high strength-ductility mainly comes from the formation of fine grains,nano-spaced submicron/nano precipitates,and weak texture.Moreover,it is worth noting that the YS of the two alloys can maintain above 160 MPa at elevated temperature of 250°C,significantly higher than that of AZ31 alloy(YS:45 MPa).The Zn/Ca solute segregation at grain boundaries,the improved heat resistance of matrix due to addition of RE,and the high melting points of strengthening particles(Mn,MgZn_(2),and Mg-Zn-RE/Mg-Zn-RE-Ca)are mainly responsible for the excellent high-temperature strength. 展开更多
关键词 magnesium alloys high-speed extrusion high strength high ductility solute segregation
下载PDF
Mechanical properties and microstructure of an α+β titanium alloy with high strength and fracture toughness 被引量:9
4
作者 YU Yang HUI Songxiao YE Wenjun XIONG Baiqing 《Rare Metals》 SCIE EI CAS CSCD 2009年第4期346-349,共4页
The Ti-Al-Sn-Zr-Cr-Mo-V-Si (Ti-62A) alloy, an alpha-beta alloy with high strength and fracture toughness, is currently used as an advanced structural material in aerospace and non-aerospace applications. Thermo-mech... The Ti-Al-Sn-Zr-Cr-Mo-V-Si (Ti-62A) alloy, an alpha-beta alloy with high strength and fracture toughness, is currently used as an advanced structural material in aerospace and non-aerospace applications. Thermo-mechanical processes can be used to optimize the relationship between its strength and fracture toughness. A Ti-62A alloy bar can be machined through a transus β-forged plus α+β solution treated and aged specimen with a lamellar alpha microstructure. The effects of heat treatment on the mechanical properties were discussed. Heat treatment provided a practical balance of strength, fracture toughness, and fatigue crack growth resistance. A comparison of the Ti-62A alloy with the Ti-62222S alloy under the same thermo-mechanical processing conditions showed that their properties are at the same level. 展开更多
关键词 titanium alloys mechanical properties strength toughness fatigue crack growth rate
下载PDF
High temperature deformation behavior and optimization of hot compression process parameters in TC11 titanium alloy with coarse lamellar original microstructure 被引量:4
5
作者 鲁世强 李鑫 +2 位作者 王克鲁 董显娟 傅铭旺 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期353-360,共8页
The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem... The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results. 展开更多
关键词 titanium alloy coarse lamellar microstructure high temperature deformation behavior processing map hot compression process parameter optimization
下载PDF
High strength magnesium alloy with α-Mg and W-phase processed by hot extrusion 被引量:9
6
作者 杨文朋 郭学锋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第11期2358-2364,共7页
Fine-grained Mg-6Zn-4Y alloy was prepared by an ingot metallurgy process with hot extrusion at 300 ℃.The microstructure was studied by XRD,OM,SEM and TEM,and the tensile properties were tested at room temperature.The... Fine-grained Mg-6Zn-4Y alloy was prepared by an ingot metallurgy process with hot extrusion at 300 ℃.The microstructure was studied by XRD,OM,SEM and TEM,and the tensile properties were tested at room temperature.The results show that the alloy is composed of α-Mg and W-phase.The microstructure of the as-extruded alloy has a bimodal grain size distribution.The fine grains with the mean size of 1.2 μm are formed by dynamic recrystallization.The coarse grains(about 23% in area fraction) are unrecrystallized regions which are elongated along extrusion direction.The engineering stress—strain curve shows a pronounced yield point.The ultimate tensile strength,yield strength,and elongation are(371±10) MPa,(350±5) MPa and(7±2)%,respectively.The high strengths are attributed to the fine-grained matrix structure enhanced by W-phase particles,nano-scaled precipitates,and strong basal plane texture. 展开更多
关键词 Mg-6Zn-4Y alloy EXTRUSION W-phase high strength yield phenomenon
下载PDF
Towards designing high mechanical performance low-alloyed wrought magnesium alloys via grain boundary segregation strategy:A review
7
作者 Zhi Zhang Jinshu Xie +2 位作者 Jinghuai Zhang Xu-Sheng Yang Ruizhi Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1774-1791,共18页
Low-alloyed magnesium(Mg)alloys have emerged as one of the most promising candidates for lightweight materials.However,their further application potential has been hampered by limitations such as low strength,poor pla... Low-alloyed magnesium(Mg)alloys have emerged as one of the most promising candidates for lightweight materials.However,their further application potential has been hampered by limitations such as low strength,poor plasticity at room temperature,and unsatisfactory formability.To address these challenges,grain refinement and grain structure control have been identified as crucial factors to achieving high performance in low-alloyed Mg alloys.An effective way for regulating grain structure is through grain boundary(GB)segregation.This review presents a comprehensive summary of the distribution criteria of segregated atoms and the effects of solute segregation on grain size and growth in Mg alloys.The analysis encompasses both single element segregation and multi-element co-segregation behavior,considering coherent interfaces and incoherent interfaces.Furthermore,we introduce the high mechanical performance low-alloyed wrought Mg alloys that utilize GB segregation and analyze the potential impact mechanisms through which GB segregation influences materials properties.Drawing upon these studies,we propose strategies for the design of high mechanical performance Mg alloys with desirable properties,including high strength,excellent ductility,and good formability,achieved through the implementation of GB segregation.The findings of this review contribute to advancing the understanding of grain boundary engineering in Mg alloys and provide valuable insights for future alloy design and optimization. 展开更多
关键词 Magnesium alloys Grain boundary segregation high strength high plasticity high formability
下载PDF
Design of a low-alloy high-strength and high-toughness martensitic steel 被引量:8
8
作者 Yan-jun Zhao Xue-ping Ren +1 位作者 Wen-chao Yang Yue Zang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第8期733-740,共8页
To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstru... To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstructure and mechanical properties of the designed steel were investigated by optical microscopy, scanning electron microscopy, tensile testing and Charpy impact test. The results show that cementite exists between 500℃ and 700℃, M7C3 exits below 720℃, and they are much lower than the austenitizing temperature of the designed steel. Furthermore, the Ti(C,N) precipitate exists until 1280℃, which refines the microstructure and increases the strength and toughness. The optimal alloying components are 0.19% C, 1.19% Si, 2.83% Mn, 1.24% Ni, and 0.049% Ti; the tensile strength and the V notch impact toughness of the designed steel are more than 1500 MPa and 100 J, respectively. 展开更多
关键词 high strength steel martensitic steel alloy design THERMODYNAMICS alloying elements microstructuremechanical properties
下载PDF
Effect of B_(2)O_(3) enrichment on microstructural inhomogeneity of high strength steel weldments
9
作者 Joydeep Roy Pritam Das 《China Welding》 CAS 2024年第3期25-32,共8页
The present work attributes the role of boron on the high strength steel submerged arc weld using an undermatching filler wire.Mild steel filler wire was used for welding in constant machine parameters setting to eval... The present work attributes the role of boron on the high strength steel submerged arc weld using an undermatching filler wire.Mild steel filler wire was used for welding in constant machine parameters setting to evaluate the joint strength due to the enrichment of boron.To change the chemical composition of the weld metal,boron trioxide powder was blended with virgin flux in various proportions(2.5%−12.5%),which led to an increase in boron weight percentage in the range of 0−0.0065.The results show that weld metals(WM)optical micrographs depict the various types of ferrites,pearlites and secondary phases like martensite-austenite(M-A).Acicular ferrite content was influenced by the boron trioxide addition.Heat affected zone(HAZ)micrographs were not showing appreciable changes with oxide enrichment.Hardness and toughness of weld metals showed the mixed trend with B_(2)O_(3) enrichment whereas,small reduction in ultimate tensile strength(UTS)and yield strength(YS)was observed. 展开更多
关键词 high strength steel B_(2)O_(3) flux microstructure HARDNESS toughness ultimate tensile strength
下载PDF
Research progress on microstructure evolution and hot processing maps of high strength β titanium alloys during hot deformation 被引量:5
10
作者 Liang HUANG Chang-min LI +5 位作者 Cheng-lin LI Song-xiao HUI Yang YU Ming-jie ZHAO Shi-qi GUO Jian-jun LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第12期3835-3859,共25页
High strength β titanium alloys are widely used in large load bearing components in the aerospace field. At present, large parts are generally formed by die forging. Different initial microstructures and deformation ... High strength β titanium alloys are widely used in large load bearing components in the aerospace field. At present, large parts are generally formed by die forging. Different initial microstructures and deformation process parameters will significantly affect the flow behavior. To precisely control the microstructures, researchers have conducted many studies to analyze the microstructure evolution law and deformation mechanism during hot compression. This review focuses on the microstructure evolution of high strength β titanium alloys during hot deformation, including dynamic recrystallization and dynamic recovery in the single-phase region and the dynamic evolution of the α phase in the two-phase region. Furthermore, the optimal hot processing regions, instability regions,and the relationship between the efficiency of power dissipation and the deformation mechanism in the hot processing map are summarized. Finally, the problems and development direction of using hot processing maps to optimize process parameters are also emphasized. 展开更多
关键词 high strengthβtitanium alloy hot deformation microstructure evolution hot processing map
下载PDF
Microstructure and mechanical property of resistance spot welded joint of aluminum alloy to high strength steel with especial electrodes 被引量:2
11
作者 张伟华 孙大千 +3 位作者 殷世强 韩立军 高阳 邱小明 《China Welding》 EI CAS 2011年第2期1-6,共6页
Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface a... Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget. 展开更多
关键词 aluminum alloy high strength steel resistance spot welded joint microstructure mechanical property
下载PDF
AN INVESTIGATION OF HIGH-TEMPERATURE DEFORMATION STRENGTHENING AND TOUGHENING MECHANISM OF TITANIUM ALLOY
12
作者 Y.G.Zhou W.D.Zing H.Q.Yu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1998年第5期376-382,共7页
The high-temperature deformation strengthening and toughening mechanisms of titanium alloys have been investigated in this paper. The materials processed by this method produce a new tri-modal microstrvcture, which co... The high-temperature deformation strengthening and toughening mechanisms of titanium alloys have been investigated in this paper. The materials processed by this method produce a new tri-modal microstrvcture, which consists of 10-20% equiaxed alpha, streaky alpha and transformed beta matrix. It is found that the higher ductility of tri-modal microstructure is attributed to the equiaxed alpha's coopemtive slip and coordinated deformation with the transformed beta matrix. The streaky alpha phases not only increase the strength and creep properties, but also increase the fracture toughness. Propagating along grain boundaries between two neighboring streaky alpha phases, cracks in tri-modal microstructure make a more tortuous way, and then the materials show a higher fracture toughness. This new method is applicable to α, near α,α+β and near β titanium alloys. 展开更多
关键词 titanium alloy high-temperature deformation strengthening and toughening mechanism
下载PDF
Fatigue Life Estimation of High Strength 2090-T83 Aluminum Alloy under Pure Torsion Loading Using Various Machine Learning Techniques
13
作者 Mustafa Sami Abdullatef Faten NAlzubaidi +1 位作者 Anees Al-Tamimi Yasser Ahmed Mahmood 《Fluid Dynamics & Materials Processing》 EI 2023年第8期2083-2107,共25页
The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of ... The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of fatigue failure.The fatigue life of high strength aluminum alloy 2090-T83 is predicted in this study using a variety of artificial intelligence and machine learning techniques for constant amplitude and negative stress ratios(R?1).Artificial neural networks(ANN),adaptive neuro-fuzzy inference systems(ANFIS),support-vector machines(SVM),a random forest model(RF),and an extreme-gradient tree-boosting model(XGB)are trained using numerical and experimental input data obtained from fatigue tests based on a relatively low number of stress measurements.In particular,the coefficients of the traditional force law formula are found using relevant numerical methods.It is shown that,in comparison to traditional approaches,the neural network and neuro-fuzzy models produce better results,with the neural network models trained using the boosting iterations technique providing the best performances.Building strong models from weak models,XGB helps to predict fatigue life by reducing model partiality and variation in supervised learning.Fuzzy neural models can be used to predict the fatigue life of alloys more accurately than neural networks and traditional methods. 展开更多
关键词 Fatigue life high strength aluminum alloy 2090-T83 NEURO-FUZZY tree boosting model neural networks adaptive neuro-fuzzy inference systems random forest support vector machines
下载PDF
Microstructure Distribution Characteristics of High-Strength Aluminum Alloy Thin-Walled Tubes during Multi-Passes Hot Power Backward Spinning Process
14
作者 Yuan Tian Ranyang Zhang +1 位作者 Gangyao Zhao Zhenghua Guo 《Journal of Materials Science and Chemical Engineering》 2023年第7期114-121,共8页
The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning pro... The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning process as it can eliminate casting defects, refine microstructure and improve the plasticity of the tube. To analyze the microstructure distribution characteristics of the tube during the spinning process, a 3D coupled thermo-mechanical FE model coupled with the microstructure evolution model of the process was established under the ABAQUS environment. The microstructure evolution characteristics and laws of the tube for the whole spinning process were analyzed. The results show that the dynamic recrystallization is mainly produced in the spinning deformation zone and root area of the tube. In the first pass, the dynamic recrystallization phenomenon is not obvious in the tube. With the pass increasing, the trend of dynamic recrystallization volume percentage gradually increases and extends from the outer surface of the tube to the inner surface. The fine-grained area shows the states of concentration, dispersion, and re-concentration as the pass number increases. . 展开更多
关键词 Cast high-strength Aluminum alloy Tube Multi-Pass Hot Power Backward Spinning FE Simulation Microstructure Evolution
下载PDF
Application of Lanthanum in High Strength and High Conductivity Copper Alloys 被引量:24
15
作者 周世杰 赵秉钧 +1 位作者 赵桢 金鑫 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期385-388,共4页
China is quite poor in argent resource. Roughly 80% of this industrial argent is imported every year. In order to improve the situation, we took advantage of rare earth (RE) mineral resource and successfully developed... China is quite poor in argent resource. Roughly 80% of this industrial argent is imported every year. In order to improve the situation, we took advantage of rare earth (RE) mineral resource and successfully developed the non-argent Lanthanum-tellurium-copper alloy as a substitute for industry argent-copper. In our research, we were able to successfully apply rare earth lanthanum to copper alloy. The defects as porosity, inclusion, etc. originating from nonvacuum melting processing were controlled. Fine grain was obtained. Meanwhile, the comprehensive properties of the copper alloy, such as strength, conductivity and thermal conductivity were improved. The research results in increasing conductivity and thermal conductivity by 5% and 15%, respectively, while the tensile strength is increased by 6% higher than Ag-Cu alloy. The anti-electric corrosion property is good, and there is no argent-cadmium steam population originating from the electric arc effect. The addition of lanthanum further reduces the content of oxygen and hydrogen. The optimum quantity of the addition of RE lanthanum in the copper alloy is 0.010% - 0.020% . 展开更多
关键词 LANTHANUM copper alloy high strength high conductivity rare earths
下载PDF
Recent developments in high-strength Mg-RE-based alloys:Focusing on Mg-Gd and Mg-Y systems 被引量:81
16
作者 Jinghuai Zhang Shujuan Liu +2 位作者 Ruizhi Wu Legan Hou Milin Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第3期277-291,共15页
Higher strength is always the goal pursued by researchers for the structural materials,especially for the lightweight magnesium(Mg)alloys which generally have relatively low strength at present.From this aspect,the pr... Higher strength is always the goal pursued by researchers for the structural materials,especially for the lightweight magnesium(Mg)alloys which generally have relatively low strength at present.From this aspect,the present paper reviews the recent reports of a kind of Mg alloys,i.e.Mg-RE(RE:rare earths,mainly Gd or Y)casting and wrought alloys,which have been able to achieve high strength compared with common or commercial Mg alloys,from the viewpoint and content of the alloy system,alloying constitution,preparation process,tensile strength and each of the main strengthening mechanisms.This review of recent research and developments in high-strength Mg-RE alloys is beneficial for the further design of Mg alloys with higher strength as well as excellent comprehensive performance. 展开更多
关键词 Mg alloys high strength Rare earths(RE) strengthening mechanism
下载PDF
Development of a high-strength Mg alloy with superior ductility through a unique texture modification from equal channel angular pressing 被引量:12
17
作者 L.B.Tong J.H.Chu +5 位作者 W.T.Sun Z.H.Jiang D.N.Zou S.F.Liu S.Kamado M.Y.Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第3期1007-1018,共12页
In the current study,a homogenous ultra-fine grained microstructure with average grain size of 1.0μm is achieved in the Mg-Zn-Ca-Mn alloy through the reduplicative equal channel angular pressing(ECAP)at 300℃,and the... In the current study,a homogenous ultra-fine grained microstructure with average grain size of 1.0μm is achieved in the Mg-Zn-Ca-Mn alloy through the reduplicative equal channel angular pressing(ECAP)at 300℃,and the mechanical properties are remarkably improved,with room-temperature yield strength of 269.6 MPa and elongation of 22.7%.The twinning deformation results in a discontinuous recrystallization behavior in the initial stage of ECAP.With further deformation,the continuously dynamic recrystallization contributes to an obvious grain refinement effect.The activation of non-basal slip system leads to the formation of a unique basal texture,which is related to the elevated ECAP temperature and the decreased grain size.Both grain refinement and texture modification derived from ECAP process result in the increase of yield strength,while the cracked secondary phase particles are beneficial to the enhanced ductility,through reducing the stress concentration and hindering premature failure. 展开更多
关键词 Mg alloy ECAP Microstructural evolution high strength Superior ductility
下载PDF
Study on non-metallic inclusions in Al killed high strength alloy steel refined by high basicity and high Al_2O_3 content slag 被引量:11
18
作者 WANG Xinhua,JIANG Min and WANG Wanjun School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing,Beijing 100083,China 《Baosteel Technical Research》 CAS 2010年第S1期21-,共1页
Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time larg... Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time largely affected non-metallic inclusions.With the reaction time increased from 30 min to 90 min in laboratory study,MgO-Al_2O_3 spinels were gradually changed into CaO-MgO-Al_2O_3 system inclusions surrounded by softer CaO-Al_2O_3 surface layers.By using high basicity slag which contained as much as 41%Al_2O_3 in the laboratory study,ratio of low melting temperature CaO-MgO-Al_2O_3 system inclusions was remarkably increased to above 80%.In the industrial experiment,during the secondary refining,the inclusions changed in order of 'Al_2O_3→MgO-Al_2O_3→CaO-MgO-Al_2O_3'.Through the LF and RH refining,most inclusions could be transferred to lower melting temperature CaO-Al_2O_3 and CaO-MgO-Al_2O_3 system inclusions. 展开更多
关键词 non-metallic inclusion SPINEL SLAG high strength alloying steel refining fatigue
下载PDF
Microstructure and mechanical properties of high-strength low alloy steel by wire and arc additive manufacturing 被引量:8
19
作者 Yi-li Dai Sheng-fu Yu +1 位作者 An-guo Huang Yu-sheng Shi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期933-942,共10页
A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed an... A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed and analyzed.The results show that the forming part includes four regions.The solidification zone solidifies as typical columnar crystals from a molten pool.The complete austenitizing zone forms from the solidification zone heated to a temperature greater than 1100℃,and the typical columnar crystals in this zone are difficult to observe.The partial austenitizing zone forms from the completely austenite zone heated between Ac1(austenite transition temperature)and1100℃,which is mainly equiaxed grains.After several thermal cycles,the partial austenitizing zone transforms to the tempering zone,which consistes of fully equiaxed grains.From the solidification zone to the tempering zone,the average grain size decreases from 75 to20μm.The mechanical properties of HBMDPJ satisfies the requirement for the intended application. 展开更多
关键词 wire and arc additive manufacturing high strength low alloy steel microstructure INCLUSIONS fine grain ferrite mechanical properties
下载PDF
GRAIN BOUNDARY SEGREGATION AND INTERGRANULAR BRITTLENESS IN HIGH STRENGTH ALUMINIUM ALLOY 被引量:3
20
作者 Song, Renguo Zheng, Meiguang 《中国有色金属学会会刊:英文版》 EI CSCD 1995年第3期97-100,共4页
GRAINBOUNDARYSEGREGATIONANDINTERGRANULARBRITTLENESSINHIGHSTRENGTHALUMINIUMALLOY¥Song,Renguo;Zheng,Meiguang(D... GRAINBOUNDARYSEGREGATIONANDINTERGRANULARBRITTLENESSINHIGHSTRENGTHALUMINIUMALLOY¥Song,Renguo;Zheng,Meiguang(DeparrmentofMateri... 展开更多
关键词 high strength aluminium alloy GRAIN BOUNDARY SEGREGATION INTERGRANULAR BRITTLENESS
下载PDF
上一页 1 2 187 下一页 到第
使用帮助 返回顶部