Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their suscep...Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their susceptibility to rapid corrosion within the body poses a significant challenge and restricts their applications. To overcome this issue, various surface modification techniques have been developed to enhance the corrosion resistance and bioactivity of Mg-based implants. PEO is a potent technique for producing an oxide film on a surface that significantly minimizes the tendency to corrode. However, the inevitable defects due to discharges and poor biological activity during the coating process remain a concern. Therefore, adding suitable particles during the coating process is a suitable solution. Hydroxyapatite(HAp)has attracted much attention in the development of biomedical applications in the scientific community. HAp shows excellent biocompatibility due to its similarity in chemical composition to the mineral portion of bone. Therefore, its combination with Mg-based implants through PEO has shown significant improvements in their corrosion resistance and bioactivity. This review paper provides a comprehensive overview of the recent advances in the preparation, characterization, corrosion behavior and bioactivity applications of HAp particles on Mg-based implants by PEO.展开更多
Silicon-substituted hydroxyapatite (Ca10(PO4)6-x(SiO4)x(OH)2-x, Si-HA) composite coatings on a bioactive titanium substrate were prepared by electrophoretic deposition technique with the addition of triethanolamine (T...Silicon-substituted hydroxyapatite (Ca10(PO4)6-x(SiO4)x(OH)2-x, Si-HA) composite coatings on a bioactive titanium substrate were prepared by electrophoretic deposition technique with the addition of triethanolamine (TEA) to enhance the ionization degree of Si-HA suspension. The surface structure was characterized by XRD, SEM, XRF, EDS and FTIR. The bond strength of the coating was investigated. The results show that the depositing thickness and the images of Si-HA coating can be changed with the variation of deposition time. The XRD spectra of Ti/Si-HA coatings show the characteristic diffraction peaks of HA, and the incorporation of silicon changes the lattice parameter of the crystal. The FTIR spectra shows that the most notable effect of silicon substitution is the decrease of intensities of —OH and PO43- groups with the silicon contents increasing. XRD and EDS element analyses present that the content of silicon in the coating increases with increasing silicon concentration in the suspension. The bioactive TiO2 coating formed may improve the bond strength of the coatings. The interaction of Ti/Si-HA coating with BSA is much greater than that of Ti/HA coating, suggesting that the incorporation of silicon in HA is significant to improve the bioactive performance of HA.展开更多
Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-c...Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-coated titanium alloy implant suffered at the interface of the HAP coatings and titanium alloy substrate will be a potential weakness in prosthesis. Yttria-stablized zirconia (YSZ) is expected to enhance the mechanical properties of the HAP coating and reduce the coefficient of thermal expansion difference between the coated layer and the substrate. These may reinforce the bonding strength between the coatings and the substrate. In this paper, HAP/YSZ composite coatings were cladded by laser. The effects of zirconia on the microstructure, mechanical properties and formation of tricalcium phosphate (TCP, Ca 3(PO 4) 2) of the HAP/YSZ composite coatings were evaluated. XRD, SEM and TEM were used to investigate the phase composition, microstructure and morphology of the coatings. The experimental results showed that adding YSZ in coatings was favorable to the composition and stability of HAP, and to the improvement of the adhesion strength, microhardness and microtoughness. A well uniform, crack-free coating of HAP/YSZ composites was formed on Ti-alloy substrate by laser cladding.展开更多
In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400μm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) s...In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400μm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti-Fe alloy powder. Microhard- ness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual anstenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the sam- ples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstruc- ture and to the presence of TiC particles.展开更多
TiCx-NiTi2/Ti cermet composite coatings C1 and C2 with gradient TiCx reinforcements were prepared on TC4 titanium alloy by laser cladding method.The microstructure and phase compositions were analyzed by means of scan...TiCx-NiTi2/Ti cermet composite coatings C1 and C2 with gradient TiCx reinforcements were prepared on TC4 titanium alloy by laser cladding method.The microstructure and phase compositions were analyzed by means of scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS)and X-ray diffraction(XRD)meter.The TiCx exhibited a dendritic microstructure,and homogeneously dispersed in the Ti-based matrix where NiTi2 was embedded.With increasing ingredient supercooling,temperature gradient and cooling temperature,the dendrites displayed a finer morphology with longer primary trunks and intensified side branches in the dilution zone.But the smoothed,coarse columnar ones became dominant in the upper clad layer due to the repeated energy input during multi-track cladding.The Vickers microhardness presented a linear change trend through the cross-sections,which well confirmed the gradient distribution of TiCx.With more TiCx,C1 presented higher hardness than C2.展开更多
TiO2-hydroxyapatite (HA) nanostructured coatings were produced by atmospheric plasma spray method. The effects of starting powder composition and grain size on their mechanical properties were investigated. The micr...TiO2-hydroxyapatite (HA) nanostructured coatings were produced by atmospheric plasma spray method. The effects of starting powder composition and grain size on their mechanical properties were investigated. The microstructure and morphology were characterized by X-ray diffraction and scanning electron microscopy (SEM). It is found that the coating with 10% HA has the best mechanical properties. Based on Rietveld refinement method, the mean grain size of the as-received powder (212 nm) extensively decreases to 66.4 nm after 20 h of high-energy ball milling. In spite of grain growth, the deposited coatings maintain their nanostructures with the mean grain size of 112 nm. SEM images show that there is a lower porosity in the coating with a higher HA content. Optical microscopy images show that uniform thickness is obtained for all the coatings.展开更多
Various surface bioactivation technology has been confirmed to improve the osteogenic ability of porous titanium(pTi)implants effectively.In this study,a three-layered composite coating,i.e.outer layer of hydroxyapati...Various surface bioactivation technology has been confirmed to improve the osteogenic ability of porous titanium(pTi)implants effectively.In this study,a three-layered composite coating,i.e.outer layer of hydroxyapatite(HA),middle layer of loose titanium dioxide(L-TiO2)and inner layer of dense TiO2(D-TiO2),was fabricated on pTi by a combined processing procedure of pickling,alkali heat(AH),anodic oxidation(AO),electrochemical deposition(ED)and hydrothermal treatment(HT).After soaking in simulated body fluid for 48 h,the surface of the AHAOEDHT-treated pTi was completely covered by a homogeneous apatite layer.Using MC3T3-E1 pro-osteoblasts as cell model,the cell culture revealed that both the pTi without surface treatment and the AHAOEDHT sample could support the attachment,growth and proliferation of the cells.Compared to the pTi sample,the AHAOEDHT one induced higher expressions of osteogenesis-related genes in the cells,including alkaline phosphatase,Type I collagen,osteopontin,osteoclast inhibitor,osteocalcin and zinc finger structure transcription factor.As thus,besides the good corrosion resistance,the HA/L-TiO2/D-TiO2-coated pTi had good osteogenic activity,showing good potential in practical application for bone defect repair.展开更多
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com...C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.展开更多
Additive manufacturing has revolutionized implantology by enabling the fabrication of customized,highly porous implants.Surface modifications using electrochemical methods can significantly enhance the bioactivity and...Additive manufacturing has revolutionized implantology by enabling the fabrication of customized,highly porous implants.Surface modifications using electrochemical methods can significantly enhance the bioactivity and biocompatibility of biomaterials,including 3D-printed implants.This study investigates novel coatings on 3D titanium(Ti)samples.Mesh Ti samples were designed and subjected to plasma electrolytic oxidation(PEO)to form a calcium phosphate coating.Subsequently,a layer of polydopamine(PDA)was applied.The electrochemical properties and morphology of the coatings were analyzed.Scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS)revealed well-developed coatings containing calcium phosphates(including hydroxyapatite),titanium dioxide,and polymerized dopamine,suggesting promising bioactive potential.Composite layers incorporating PDA exhibited superior protective properties compared to base PEO coatings.展开更多
A codeposition of bioglass (BG) and hydroxyapatite (HA) on the substrate Ti6Al4V is realized in a nonaqueous solution system by inducing crystallization of HA on surface of the BG grain and electrophoresis deposition ...A codeposition of bioglass (BG) and hydroxyapatite (HA) on the substrate Ti6Al4V is realized in a nonaqueous solution system by inducing crystallization of HA on surface of the BG grain and electrophoresis deposition (EPD), and then a bioactive graded ceramic coating was obtained after sintering of the coating. This technique is a new method for making bioactive graded coating. The adhesive strength between the coating and the substrate reaches 18?MPa, and the better electrophoresis depositing parameters and optimal sintering procedure are obtained.展开更多
WC7Co/Ti6Al4V composite coatings are deposited on the pure Ti substrate by pulse laser cladding(LC).During the laser melting process,the decomposition of WC7Co particles will lead to the evolution of microstructure an...WC7Co/Ti6Al4V composite coatings are deposited on the pure Ti substrate by pulse laser cladding(LC).During the laser melting process,the decomposition of WC7Co particles will lead to the evolution of microstructure and phases,which is directly related to the wear resistance and mechanism of composite coating.The microstructural evolution,phase compositions and interface reaction of WC7Co/Ti6Al4V composite coating were examined by scanning electron microscopy,energydispersive spectrum and X-ray diffraction(XRD).The hardness of different structures and abrasive resistance of composite coating were measured.The results show that the typical microstructure of LC WC7Co/Ti6Al4V composite coating can be classified into dissolved WC7Co composite structure and un-dissolved WC7Co structure.According to XRD results,there are Ti solid solution,W,TiC,VC,Co3W3C and secondary W2C in composite coating.The eutectic structure formed by the dissolved WC7Co particles consisted of W,W2C,TiC and P-Ti solid solution.The mean hardness of different structures exhibits a significant gradient distribution in composite coating.A reaction layer composed of TiC,W and W2C is also generated onto the interface between un-dissolved WC7Co particles and Ti6Al4V alloy matrix.The abrasive mechanisms of WC7Co/Ti6Al4V composite coating are mainly adhesive wear and oxidation wear during the dry sliding process.展开更多
The titanium carbide phase was synthesized in laser melted-pool in situ as the reinforced particles of nickel based composite coating on Ti-6Al-4V alloy surface using the nickel and graphite blending powder by laser c...The titanium carbide phase was synthesized in laser melted-pool in situ as the reinforced particles of nickel based composite coating on Ti-6Al-4V alloy surface using the nickel and graphite blending powder by laser cladding. The microstructure investigation showed that the petals-shaped particles and granular particles were two main morphology of titanium carbide particles. And a few spiral-shaped titanium carbide pattern and eutectic titanium carbide appeared on the cross-sections of the coating. The spiral-shaped titanium carbide pattern composed of some slender arc-shape titanium carbide particles and the eutectic titanium carbide was fine. The morphology and distribution of the spiral-shaped titanium carbide patterns and eutectic titanium carbide confirmed that their growth mechanism was the dissolution-precipitation mechanism and was affected by the convection behavior of the laser melted pool. The spiral-shaped titanium carbide pattern would precipitate out the high-temperature melts under high-speed convection. The eutectic titanium carbide would precipitate out when the melts stopped convection or dropped to eutectic temperature.展开更多
文摘Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their susceptibility to rapid corrosion within the body poses a significant challenge and restricts their applications. To overcome this issue, various surface modification techniques have been developed to enhance the corrosion resistance and bioactivity of Mg-based implants. PEO is a potent technique for producing an oxide film on a surface that significantly minimizes the tendency to corrode. However, the inevitable defects due to discharges and poor biological activity during the coating process remain a concern. Therefore, adding suitable particles during the coating process is a suitable solution. Hydroxyapatite(HAp)has attracted much attention in the development of biomedical applications in the scientific community. HAp shows excellent biocompatibility due to its similarity in chemical composition to the mineral portion of bone. Therefore, its combination with Mg-based implants through PEO has shown significant improvements in their corrosion resistance and bioactivity. This review paper provides a comprehensive overview of the recent advances in the preparation, characterization, corrosion behavior and bioactivity applications of HAp particles on Mg-based implants by PEO.
基金Project(39931702) supported by the National Natural Science Foundation of ChinaProject(041223) supported by the Natural Science Foundation of Hebei Province, China
文摘Silicon-substituted hydroxyapatite (Ca10(PO4)6-x(SiO4)x(OH)2-x, Si-HA) composite coatings on a bioactive titanium substrate were prepared by electrophoretic deposition technique with the addition of triethanolamine (TEA) to enhance the ionization degree of Si-HA suspension. The surface structure was characterized by XRD, SEM, XRF, EDS and FTIR. The bond strength of the coating was investigated. The results show that the depositing thickness and the images of Si-HA coating can be changed with the variation of deposition time. The XRD spectra of Ti/Si-HA coatings show the characteristic diffraction peaks of HA, and the incorporation of silicon changes the lattice parameter of the crystal. The FTIR spectra shows that the most notable effect of silicon substitution is the decrease of intensities of —OH and PO43- groups with the silicon contents increasing. XRD and EDS element analyses present that the content of silicon in the coating increases with increasing silicon concentration in the suspension. The bioactive TiO2 coating formed may improve the bond strength of the coatings. The interaction of Ti/Si-HA coating with BSA is much greater than that of Ti/HA coating, suggesting that the incorporation of silicon in HA is significant to improve the bioactive performance of HA.
文摘Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-coated titanium alloy implant suffered at the interface of the HAP coatings and titanium alloy substrate will be a potential weakness in prosthesis. Yttria-stablized zirconia (YSZ) is expected to enhance the mechanical properties of the HAP coating and reduce the coefficient of thermal expansion difference between the coated layer and the substrate. These may reinforce the bonding strength between the coatings and the substrate. In this paper, HAP/YSZ composite coatings were cladded by laser. The effects of zirconia on the microstructure, mechanical properties and formation of tricalcium phosphate (TCP, Ca 3(PO 4) 2) of the HAP/YSZ composite coatings were evaluated. XRD, SEM and TEM were used to investigate the phase composition, microstructure and morphology of the coatings. The experimental results showed that adding YSZ in coatings was favorable to the composition and stability of HAP, and to the improvement of the adhesion strength, microhardness and microtoughness. A well uniform, crack-free coating of HAP/YSZ composites was formed on Ti-alloy substrate by laser cladding.
基金financially supported by the National Science and Technology Major Project of China (No. 2012ZX04010-081)the National High-Tech Research and Development Program of China (No. 2013AA040404)
文摘In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400μm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti-Fe alloy powder. Microhard- ness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual anstenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the sam- ples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstruc- ture and to the presence of TiC particles.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Grant No.2011BAE12B03)the National Natural Science Foundation of China(Grant No.11372110)
文摘TiCx-NiTi2/Ti cermet composite coatings C1 and C2 with gradient TiCx reinforcements were prepared on TC4 titanium alloy by laser cladding method.The microstructure and phase compositions were analyzed by means of scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS)and X-ray diffraction(XRD)meter.The TiCx exhibited a dendritic microstructure,and homogeneously dispersed in the Ti-based matrix where NiTi2 was embedded.With increasing ingredient supercooling,temperature gradient and cooling temperature,the dendrites displayed a finer morphology with longer primary trunks and intensified side branches in the dilution zone.But the smoothed,coarse columnar ones became dominant in the upper clad layer due to the repeated energy input during multi-track cladding.The Vickers microhardness presented a linear change trend through the cross-sections,which well confirmed the gradient distribution of TiCx.With more TiCx,C1 presented higher hardness than C2.
文摘TiO2-hydroxyapatite (HA) nanostructured coatings were produced by atmospheric plasma spray method. The effects of starting powder composition and grain size on their mechanical properties were investigated. The microstructure and morphology were characterized by X-ray diffraction and scanning electron microscopy (SEM). It is found that the coating with 10% HA has the best mechanical properties. Based on Rietveld refinement method, the mean grain size of the as-received powder (212 nm) extensively decreases to 66.4 nm after 20 h of high-energy ball milling. In spite of grain growth, the deposited coatings maintain their nanostructures with the mean grain size of 112 nm. SEM images show that there is a lower porosity in the coating with a higher HA content. Optical microscopy images show that uniform thickness is obtained for all the coatings.
基金financially supported by the National Natural Science Foundation of China(81671825)the Sichuan Science and Technology Innovation Team of China(2019JDTD0008).
文摘Various surface bioactivation technology has been confirmed to improve the osteogenic ability of porous titanium(pTi)implants effectively.In this study,a three-layered composite coating,i.e.outer layer of hydroxyapatite(HA),middle layer of loose titanium dioxide(L-TiO2)and inner layer of dense TiO2(D-TiO2),was fabricated on pTi by a combined processing procedure of pickling,alkali heat(AH),anodic oxidation(AO),electrochemical deposition(ED)and hydrothermal treatment(HT).After soaking in simulated body fluid for 48 h,the surface of the AHAOEDHT-treated pTi was completely covered by a homogeneous apatite layer.Using MC3T3-E1 pro-osteoblasts as cell model,the cell culture revealed that both the pTi without surface treatment and the AHAOEDHT sample could support the attachment,growth and proliferation of the cells.Compared to the pTi sample,the AHAOEDHT one induced higher expressions of osteogenesis-related genes in the cells,including alkaline phosphatase,Type I collagen,osteopontin,osteoclast inhibitor,osteocalcin and zinc finger structure transcription factor.As thus,besides the good corrosion resistance,the HA/L-TiO2/D-TiO2-coated pTi had good osteogenic activity,showing good potential in practical application for bone defect repair.
基金Projects(51201134,51271147)supported by the National Natural Science Foundation of ChinaProject(2015JM5181)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central Universities,China
文摘C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.
基金The formation of coatings,as well as SEM and EDS,was supported by Russian Science Foundation Grant No.22-73-10149,https://rscf.ru/project/22-73-10149/The electrochemical studies and wettability measurements were supported by the Russian Science Foundation Grant No.23-13-00329,https://rscf.ru/project/23-13-00329/.
文摘Additive manufacturing has revolutionized implantology by enabling the fabrication of customized,highly porous implants.Surface modifications using electrochemical methods can significantly enhance the bioactivity and biocompatibility of biomaterials,including 3D-printed implants.This study investigates novel coatings on 3D titanium(Ti)samples.Mesh Ti samples were designed and subjected to plasma electrolytic oxidation(PEO)to form a calcium phosphate coating.Subsequently,a layer of polydopamine(PDA)was applied.The electrochemical properties and morphology of the coatings were analyzed.Scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS)revealed well-developed coatings containing calcium phosphates(including hydroxyapatite),titanium dioxide,and polymerized dopamine,suggesting promising bioactive potential.Composite layers incorporating PDA exhibited superior protective properties compared to base PEO coatings.
文摘A codeposition of bioglass (BG) and hydroxyapatite (HA) on the substrate Ti6Al4V is realized in a nonaqueous solution system by inducing crystallization of HA on surface of the BG grain and electrophoresis deposition (EPD), and then a bioactive graded ceramic coating was obtained after sintering of the coating. This technique is a new method for making bioactive graded coating. The adhesive strength between the coating and the substrate reaches 18?MPa, and the better electrophoresis depositing parameters and optimal sintering procedure are obtained.
基金National Natural Science Foundation of China(51701165)the Natural Science Foundation of Shaanxi Province(2018JM5005)+1 种基金Postdoctoral Science Foundation of China(2017M623334XB)Shaanxi Province Postdoctoral Science Foundation(2018BSHQYXMZZ36).
文摘WC7Co/Ti6Al4V composite coatings are deposited on the pure Ti substrate by pulse laser cladding(LC).During the laser melting process,the decomposition of WC7Co particles will lead to the evolution of microstructure and phases,which is directly related to the wear resistance and mechanism of composite coating.The microstructural evolution,phase compositions and interface reaction of WC7Co/Ti6Al4V composite coating were examined by scanning electron microscopy,energydispersive spectrum and X-ray diffraction(XRD).The hardness of different structures and abrasive resistance of composite coating were measured.The results show that the typical microstructure of LC WC7Co/Ti6Al4V composite coating can be classified into dissolved WC7Co composite structure and un-dissolved WC7Co structure.According to XRD results,there are Ti solid solution,W,TiC,VC,Co3W3C and secondary W2C in composite coating.The eutectic structure formed by the dissolved WC7Co particles consisted of W,W2C,TiC and P-Ti solid solution.The mean hardness of different structures exhibits a significant gradient distribution in composite coating.A reaction layer composed of TiC,W and W2C is also generated onto the interface between un-dissolved WC7Co particles and Ti6Al4V alloy matrix.The abrasive mechanisms of WC7Co/Ti6Al4V composite coating are mainly adhesive wear and oxidation wear during the dry sliding process.
基金Funded by the Shanghai Science and Technology Committee Innovation(17JC1400600 and 17JC1400601)the National Natural Science Foundation of China(51471105)+1 种基金the Graduate Students’Innovative Research Projects of Shanghai University of Engineering Science(17KY0513)the College Student Innovation Training Projects of Shanghai University of Engineering Scienc(CX1805007)
文摘The titanium carbide phase was synthesized in laser melted-pool in situ as the reinforced particles of nickel based composite coating on Ti-6Al-4V alloy surface using the nickel and graphite blending powder by laser cladding. The microstructure investigation showed that the petals-shaped particles and granular particles were two main morphology of titanium carbide particles. And a few spiral-shaped titanium carbide pattern and eutectic titanium carbide appeared on the cross-sections of the coating. The spiral-shaped titanium carbide pattern composed of some slender arc-shape titanium carbide particles and the eutectic titanium carbide was fine. The morphology and distribution of the spiral-shaped titanium carbide patterns and eutectic titanium carbide confirmed that their growth mechanism was the dissolution-precipitation mechanism and was affected by the convection behavior of the laser melted pool. The spiral-shaped titanium carbide pattern would precipitate out the high-temperature melts under high-speed convection. The eutectic titanium carbide would precipitate out when the melts stopped convection or dropped to eutectic temperature.