The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof...The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof performance of Ti40 was established and the fireproof mechanism of Ti40 was analyzed by SEM, XRD and EDS. The results show that the p--xo relationship of Ti40 obeys parabolic rule. The varying range of xo is about 25% while p varies within 0.1-0.25 MPa. When Xo is 〉70%, Ti40 is ignited immediately at room temperature and develops into continual and steady burning, and the duration of burning is more than 10 s. The fireproof performance of Ti40 is better than TC4 while xo of Ti40 is at least 40% higher than TC4. When Xo is low, the fireproof performance of Ti40 is more sensitive to p; when Xo increases, it is more sensitive to Xo. The forming of fused oxides of V205, TiO2 and Cr203 with strong inner interaction during friction is the basic reason of high fireproof performance of Ti40.展开更多
In order to improve the oxidation and wear resistance of blades tip of titanium alloys as well as the sealing performance of the gas turbine engine,a Ni/cBN abrasive coating was prepared on titanium alloys through com...In order to improve the oxidation and wear resistance of blades tip of titanium alloys as well as the sealing performance of the gas turbine engine,a Ni/cBN abrasive coating was prepared on titanium alloys through composite electroplating.Oxidation,mechanical and tribological properties of the abrasive coating were investigated.Furthermore,the effect of the oxidation on the mechanical and tribological properties was also evaluated.Oxidation results revealed that the abrasive coating underwent slight oxidation within 700℃.Meanwhile,some intermetallic compounds,Ni3Ti,NiTi and NiTi2,were formed at the coating/substrate interface during oxidation.Due to the pinning effect of cBN particles and the different thermal expansion coefficients of the coating and substrate,the coating/substrate interface was cracked after oxidation at 700℃.Tensile results showed that the presence of coating reduced the strength of the alloy significantly at room temperature,while only marginal variations of the strength of the coated and uncoated specimens at elevated temperatures.Besides,the wear tests indicated that the coating had the excellent cutting ability and wear resistance,which can effectively protect the blades tip of titanium alloys.As the temperature increased,the wear resistance decreased due to the decrease in the mechanical properties of the Ni/cBN coating.展开更多
Micro-arc oxidation(MAO)coating was prepared on Ti6Al4V alloy surface and its characterizations were detected by Vickers hardness tester,profilometer,scanning electric microscope(SEM),energy dispersive X-ray spectrome...Micro-arc oxidation(MAO)coating was prepared on Ti6Al4V alloy surface and its characterizations were detected by Vickers hardness tester,profilometer,scanning electric microscope(SEM),energy dispersive X-ray spectrometer(EDX)and X-ray diffractometer(XRD).Fretting wear behaviors of the coating and its substrate were comparatively tested without lubrication under varied displacement amplitudes(D)in a range of 3-40μm,constant normal load(Fn)of 300 N and frequency of 5 Hz.The results showed that the MAO coating,presenting rough and porous surface and high hardness,mainly consisted of rutile and anatase TiO2 phases.Compared with the substrate,the MAO coating could shift the mixed fretting regime(MFR)and slip regime(SR)to a direction of smaller displacement amplitude.In the partial slip regime(PSR),lower friction coefficients and slight damage appeared due to the coordination of elastic deformation of contact zones.In the MFR,the friction coefficient of the coating was lower than that of the substrate as a result of the prevention of plastic deformation by the hard ceramic surface.With the increase of the displacement amplitude,the degradation of the MAO coating and the substrate increased extremely.The fretting wear mechanisms of the coating were abrasive wear and delamination with some material transfer of specimen.In addition,the coating presented a better property for alleviating fretting wear.展开更多
Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under t...Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under the loads of 275 N at 25 °C, 150 N at 100 °C and 75 N at 200 °C, respectively. However, as the load is less than 50 N, the wear rate at 200 °C is lower than that at 25 °C or 100 °C. In mild wear regimes, the wear mechanisms can be classified into abrasive wear, oxidation wear and delamination wear. Delamination wear prevailed as the mild-to-severe wear transition starts to occur; the delamination occurs from the inside of matrix. Subsequently, plastic-extrusion wear as severe wear prevails accompanied with the transition. The thick and hard tribo-layer postpones the mild-to-severe wear transition due to restricting the occurrence of massive plastic deformation of worn surfaces.展开更多
In this research,plasma electrolytic oxidation coatings were prepared on AZ31 Mg alloy in a silicate-based solution containing K_(2)TiF_(6) using bipolar and soft sparking waveforms with 10,20,and 30%cathodic duty cyc...In this research,plasma electrolytic oxidation coatings were prepared on AZ31 Mg alloy in a silicate-based solution containing K_(2)TiF_(6) using bipolar and soft sparking waveforms with 10,20,and 30%cathodic duty cycles.The coatings displayed a net-like surface morphology consisted of irregular micro-pores,micro-cracks,fused oxide particles,and a sintered structure.Due to the incorporation of TiO_(2) colloidal particles and the cathodic pulse repair effect,most of the micro-pores were sealed.Long-term corrosion performance of the coatings was investigated using electrochemical impedance spectroscopy during immersion in 3.5 wt.%NaCl solution up to 14 days.The coating grown by the soft sparking waveform with a 20%cathodic duty cycle having the lowest porosity(6.2%)and a sharp layer concentrated in F element at the substrate/coating interface shows the highest corrosion resistance.The friction coefficient of this coating has remained stable during the sliding even under 5 N normal load,showing relatively higher wear resistance than other coatings.The coating produced using the equivalent unipolar waveform,as the reference specimen,showed the highest friction coefficient and the lowest wear resistance despite its highest micro-hardness.展开更多
The dry sliding wear properties of Ti-6Al-4V alloy sliding against GCr15 steel under different velocities(between 0.2 and 1.2 m/s)and applied loads(from 30 to 90 N)were tested using a pin on disk tester in air. The we...The dry sliding wear properties of Ti-6Al-4V alloy sliding against GCr15 steel under different velocities(between 0.2 and 1.2 m/s)and applied loads(from 30 to 90 N)were tested using a pin on disk tester in air. The wear occurred on both surfaces of the tested couplings. The wear rate of the Ti-6Al-4V alloy ranged from 23.0 to 123.8 mg/km. The wear of Ti-6Al-4V samples was in severe wear. The wear rate of Ti-6Al-4V samples increased with the increasing of load and shows a minimum on the curves of wear rate versus sliding velocity. SEM morphologies of worn surfaces and debris were observed. Phases in the debris were analyzed by means of XRD spectra.展开更多
In order to improve the wear resistance of titanium alloy Ti6Al4V and high temperature oxidation resistance of intermetallic compound TiAl, the Double Glow Plasma Surface Alloying Technique (DG technique) was applied ...In order to improve the wear resistance of titanium alloy Ti6Al4V and high temperature oxidation resistance of intermetallic compound TiAl, the Double Glow Plasma Surface Alloying Technique (DG technique) was applied to modify the surface properties of these materials. Mo, Nb, Cr, Ni were diffused into the substrate materials to form alloyed layers with different properties. This paper shows the microstructure, microhardnesses, distributions of the alloy elements on the alloyed layers. Wear and high temperature oxidation tests were carried out. Test results indicate that the wear resistance of Ti6Al4V and the high temperature oxidation resistance of TiAl were improved significantly.展开更多
基金Project(20123021004) supported by the Key Program of the Aeronautical Science Foundation of ChinaProject(51312030501) supported by the Pre-Research Program of China
文摘The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof performance of Ti40 was established and the fireproof mechanism of Ti40 was analyzed by SEM, XRD and EDS. The results show that the p--xo relationship of Ti40 obeys parabolic rule. The varying range of xo is about 25% while p varies within 0.1-0.25 MPa. When Xo is 〉70%, Ti40 is ignited immediately at room temperature and develops into continual and steady burning, and the duration of burning is more than 10 s. The fireproof performance of Ti40 is better than TC4 while xo of Ti40 is at least 40% higher than TC4. When Xo is low, the fireproof performance of Ti40 is more sensitive to p; when Xo increases, it is more sensitive to Xo. The forming of fused oxides of V205, TiO2 and Cr203 with strong inner interaction during friction is the basic reason of high fireproof performance of Ti40.
基金supported by the National Science and Technology Major Project(No.2017-Ⅶ-0012-0108)the Natural Science Foundation of China(No.51701157)。
文摘In order to improve the oxidation and wear resistance of blades tip of titanium alloys as well as the sealing performance of the gas turbine engine,a Ni/cBN abrasive coating was prepared on titanium alloys through composite electroplating.Oxidation,mechanical and tribological properties of the abrasive coating were investigated.Furthermore,the effect of the oxidation on the mechanical and tribological properties was also evaluated.Oxidation results revealed that the abrasive coating underwent slight oxidation within 700℃.Meanwhile,some intermetallic compounds,Ni3Ti,NiTi and NiTi2,were formed at the coating/substrate interface during oxidation.Due to the pinning effect of cBN particles and the different thermal expansion coefficients of the coating and substrate,the coating/substrate interface was cracked after oxidation at 700℃.Tensile results showed that the presence of coating reduced the strength of the alloy significantly at room temperature,while only marginal variations of the strength of the coated and uncoated specimens at elevated temperatures.Besides,the wear tests indicated that the coating had the excellent cutting ability and wear resistance,which can effectively protect the blades tip of titanium alloys.As the temperature increased,the wear resistance decreased due to the decrease in the mechanical properties of the Ni/cBN coating.
基金Project(50521503)supported by the National Natural Science Foundation of ChinaProject(2007CB714704)supported by the National Basic Research Program of ChinaProject(200536)supported by the Foundation of the Author of National Excellent Doctoral Dissertation of China
文摘Micro-arc oxidation(MAO)coating was prepared on Ti6Al4V alloy surface and its characterizations were detected by Vickers hardness tester,profilometer,scanning electric microscope(SEM),energy dispersive X-ray spectrometer(EDX)and X-ray diffractometer(XRD).Fretting wear behaviors of the coating and its substrate were comparatively tested without lubrication under varied displacement amplitudes(D)in a range of 3-40μm,constant normal load(Fn)of 300 N and frequency of 5 Hz.The results showed that the MAO coating,presenting rough and porous surface and high hardness,mainly consisted of rutile and anatase TiO2 phases.Compared with the substrate,the MAO coating could shift the mixed fretting regime(MFR)and slip regime(SR)to a direction of smaller displacement amplitude.In the partial slip regime(PSR),lower friction coefficients and slight damage appeared due to the coordination of elastic deformation of contact zones.In the MFR,the friction coefficient of the coating was lower than that of the substrate as a result of the prevention of plastic deformation by the hard ceramic surface.With the increase of the displacement amplitude,the degradation of the MAO coating and the substrate increased extremely.The fretting wear mechanisms of the coating were abrasive wear and delamination with some material transfer of specimen.In addition,the coating presented a better property for alleviating fretting wear.
基金Project (51071078) supported by the National Natural Science Foundation of ChinaProject (AE201035) supported by the Research Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, China
文摘Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under the loads of 275 N at 25 °C, 150 N at 100 °C and 75 N at 200 °C, respectively. However, as the load is less than 50 N, the wear rate at 200 °C is lower than that at 25 °C or 100 °C. In mild wear regimes, the wear mechanisms can be classified into abrasive wear, oxidation wear and delamination wear. Delamination wear prevailed as the mild-to-severe wear transition starts to occur; the delamination occurs from the inside of matrix. Subsequently, plastic-extrusion wear as severe wear prevails accompanied with the transition. The thick and hard tribo-layer postpones the mild-to-severe wear transition due to restricting the occurrence of massive plastic deformation of worn surfaces.
文摘In this research,plasma electrolytic oxidation coatings were prepared on AZ31 Mg alloy in a silicate-based solution containing K_(2)TiF_(6) using bipolar and soft sparking waveforms with 10,20,and 30%cathodic duty cycles.The coatings displayed a net-like surface morphology consisted of irregular micro-pores,micro-cracks,fused oxide particles,and a sintered structure.Due to the incorporation of TiO_(2) colloidal particles and the cathodic pulse repair effect,most of the micro-pores were sealed.Long-term corrosion performance of the coatings was investigated using electrochemical impedance spectroscopy during immersion in 3.5 wt.%NaCl solution up to 14 days.The coating grown by the soft sparking waveform with a 20%cathodic duty cycle having the lowest porosity(6.2%)and a sharp layer concentrated in F element at the substrate/coating interface shows the highest corrosion resistance.The friction coefficient of this coating has remained stable during the sliding even under 5 N normal load,showing relatively higher wear resistance than other coatings.The coating produced using the equivalent unipolar waveform,as the reference specimen,showed the highest friction coefficient and the lowest wear resistance despite its highest micro-hardness.
文摘The dry sliding wear properties of Ti-6Al-4V alloy sliding against GCr15 steel under different velocities(between 0.2 and 1.2 m/s)and applied loads(from 30 to 90 N)were tested using a pin on disk tester in air. The wear occurred on both surfaces of the tested couplings. The wear rate of the Ti-6Al-4V alloy ranged from 23.0 to 123.8 mg/km. The wear of Ti-6Al-4V samples was in severe wear. The wear rate of Ti-6Al-4V samples increased with the increasing of load and shows a minimum on the curves of wear rate versus sliding velocity. SEM morphologies of worn surfaces and debris were observed. Phases in the debris were analyzed by means of XRD spectra.
文摘In order to improve the wear resistance of titanium alloy Ti6Al4V and high temperature oxidation resistance of intermetallic compound TiAl, the Double Glow Plasma Surface Alloying Technique (DG technique) was applied to modify the surface properties of these materials. Mo, Nb, Cr, Ni were diffused into the substrate materials to form alloyed layers with different properties. This paper shows the microstructure, microhardnesses, distributions of the alloy elements on the alloyed layers. Wear and high temperature oxidation tests were carried out. Test results indicate that the wear resistance of Ti6Al4V and the high temperature oxidation resistance of TiAl were improved significantly.