期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Gradient Structure of Ti-Al-C Ternary Carbide Prepared by Hot-pressing Sintering 被引量:1
1
作者 梅炳初 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第2期5-7,共3页
X-ray diffraction (XRD) analysis on different polished surfaces normal to the hot pressing direction reveals that the phase compositions of the polished surfaces from the outside to the inside are pure TiC, Ti_3AlC_2+... X-ray diffraction (XRD) analysis on different polished surfaces normal to the hot pressing direction reveals that the phase compositions of the polished surfaces from the outside to the inside are pure TiC, Ti_3AlC_2+TiC, pure Ti_3AlC_2 and Ti_2AlC+Ti_3AlC_2, no matter elemental powder or TiC is used as raw materials. It is found that ternary-layered carbide Ti_2AlC samples synthesized at 1500 ℃ by hot-pressing sintering are inhomogeneous and have a gradient structure.Electron probe X-ray micro-analysis (EPMA) indicates that the Al content along the hot pressing axis is parabolic, it is the highest in the center and the lowest at the both ends, while the Ti content is constant along the axis. The experimental result reveals that the evaporation of Al in samples in an open system during hot pressing sintering results in a gradient structure. 展开更多
关键词 titanium aluminum carbide ceramic gradient structure EVAPORATION
下载PDF
Effect of Tin on the Reaction Synthesis of Ternary Carbide Ti_3AlC_2
2
作者 周卫兵 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期283-286,共4页
The effect of tin on synthesis of Ti3AlC2 by spark plasma sintering (SPS) from TiC/Ti/Al powders was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for phase identificatio... The effect of tin on synthesis of Ti3AlC2 by spark plasma sintering (SPS) from TiC/Ti/Al powders was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for phase identification and microstructure evaluation. The experimental results show that addition of tin can considerably accelerate the synthesis reaction of Ti3AlC2 and fully dense, essentially single-phase polycrystalline Ti3AlC2 could be successfully obtained by sintering 2TiC/1Ti/1Al/0.2Sn powders at 1200-1250 ℃ under a pressure of 30 MPa. SEM images show that Ti3AlC2 samples in about 2-5 μm thick and 10-25μm long platelets can be obtained. The fracture toughness and flexural strength of Ti3AlC2 were 6.5±0.2 MPa·m^1/2 and 560±10 MPa, respectively. 展开更多
关键词 titanium aluminum carbide spark sintering technique synthesis
下载PDF
Fabrication and properties of silver-based composites reinforced with carbon-coated Ti_(3)AlC_(2)
3
作者 Yong-fa Zhu Wu-bian Tian +4 位作者 Dan-dan Wang Heng Zhang Jian-xiang Ding Pei-gen Zhang Zheng-ming Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第11期1836-1843,共8页
Ti_(3)AlC_(2)-reinforced Ag-based composites,which are used as sliding current collectors,electrical contacts,and electrode materials,exhibit remarkable performances.However,the interfacial reactions between Ag and Ti... Ti_(3)AlC_(2)-reinforced Ag-based composites,which are used as sliding current collectors,electrical contacts,and electrode materials,exhibit remarkable performances.However,the interfacial reactions between Ag and Ti_(3)AlC_(2) significantly degrade the electrical and thermal properties of these composites.To diminish these interfacial reactions,we fabricated carbon-coated Ti_(3)AlC_(2) particles(C@Ti_(3)AlC_(2))as reinforcement and prepared Ag–10wt%C@Ti_(3)AlC_(2) composites with carbon-layer thicknesses ranging from 50–200 nm.Compared with the uncoated Ag–Ti_(3)AlC_(2) composite,Ag–C@Ti_(3)AlC_(2) was found to have a better distribution of Ti_(3)AlC_(2) particles.With increases in the carbon-layer thickness,the Vickers hardness value and relative density of Ag–C@Ti_(3)AlC_(2) gradually decreases.With a carbon-layer thickness of 150 nm,we obtained the lowest resistivity of Ag–C@Ti_(3)AlC_(2) of 29.4135.5×10^(−9)Ω·m,which is half that of Ag–Ti_(3)AlC_(2)(66.7×10^(−9)Ω·m).The thermal conductivity of Ag–C@Ti_(3)AlC_(2) reached a maximum value of 135.5 W·m^(−1)·K^(−1) with a 200-nm carbon coating(~1.8 times that of Ag–Ti_(3)AlC_(2)).These results indicate that the carbon-coating method is a feasible strategy for improving the performance of Ag–C@Ti_(3)AlC_(2) composites. 展开更多
关键词 silver-based composite titanium aluminum carbide carbon coating interfacial reaction properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部