The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement wit...The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement with the experimental data and previous theoretical values.All these borides are found to be mechanically stable at ambient pressure.Compared with parent metal Ti (120 GPa),the larger bulk modulus of these borides increase successively with the increase of the boron content in three borides,which may be due to direction bonding introduced by the boron atoms in the lattice and the strong covalent Ti-B bonds.Additionally,TiB can be regarded as a candidate of incompressible and hard material besides TiB2.Furthermore,the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli.Electronic density of states and atomic Mulliken charges analysis show that chemical bonding in these titanium borides is a complex mixture of covalent,ionic,and metallic characters.展开更多
The equilibrium lattice parameters, electronic structure, bulk modulus, Debye temperature, heat capacity and Gibbs energy of TiB and TiB2 were investigated using the pseudopotential plane-wave method based on density ...The equilibrium lattice parameters, electronic structure, bulk modulus, Debye temperature, heat capacity and Gibbs energy of TiB and TiB2 were investigated using the pseudopotential plane-wave method based on density functional theory (DFT) and the improved quasi-harmonic Debye method. The results show that the total density of states (DOS) of TiB2 is mainly provided by the orbit hybridization of Ti-3d and B-2p states, and the total DOS of TiB is mainly provided by the hybrids bond of Ti-3d and B-2p below the Fermi level and Ti—Ti bond up to the Fermi level. The Ti—B hybrid bond in TiB2 is stronger than that in TiB. Finally, the enthalpy of formation at 0 K, heat capacity and Gibbs free energy of formation at various temperatures were determined. The calculated results are in excellent agreement with the available experimental data.展开更多
The effects of boride coating on the bioactivity, antibacterial activity, and electrochemical behavior of commercially pure titanium(CP-Ti) in phosphate buffer solution(PBS) with bovine serum albumin(BSA) were studied...The effects of boride coating on the bioactivity, antibacterial activity, and electrochemical behavior of commercially pure titanium(CP-Ti) in phosphate buffer solution(PBS) with bovine serum albumin(BSA) were studied. The grazing incidence X-ray diffraction(GIXRD) pattern confirmed the formation of a Ti B/Ti B2 coating via boriding process. Scanning electron microscopy(SEM) observation indicated that the Ti B2 cross-linked particles covered the Ti B whiskers. Water contact angle measurements revealed that boriding led to the formation of a surface with intermediate water affinity. Potentiodynamic polarization(PDP) assays demonstrated that the Ti B/Ti B2 coating had acceptable passivation behavior in BSA-containing PBS. Electrochemical impedance spectroscopy(EIS) measurements revealed that the passivation behavior of the CP-Ti and the borided samples was improved by increasing exposure time. Based on the Mott-Schottky(M-S) tests, it was realized that the charge carriers of passive films of both samples decreased with increasing exposure time in BSA-containing PBS. The bioactivity test results in a simulated body fluid showed that the Ti B/Ti B2 coating switched the CP-Ti from bioinert to bioactive material. Finally, the antibacterial activity test of the Ti B/Ti B2 coating against Escherichia coli and Staphylococcus aureus indicated 99% antibacterial activity.展开更多
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to...Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.展开更多
TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical pro...TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite.展开更多
The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount o...The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.展开更多
TiB_(2)/Al2O3 ceramics reinforced with Mg O are prepared by spark plasma sintering(SPS).The dielectric and microwave(MW)absorption properties are discussed.The results indicate that both the commercial TiB_(2)(C-TiB_(...TiB_(2)/Al2O3 ceramics reinforced with Mg O are prepared by spark plasma sintering(SPS).The dielectric and microwave(MW)absorption properties are discussed.The results indicate that both the commercial TiB_(2)(C-TiB_(2))content and preparing temperature play important roles in the dielectric properties.Simultaneously,TiB_(2)/Al2O3 composite shows the best MW absorption property when the C-TiB_(2)content and preparing temperature are 9 wt%and 1400°C.To further improve the MW absorption properties,the composite containing 9 wt%synthesized TiB_(2)(S-TiB_(2))has been sintered at 1400°C.Its high-temperature complex permittivity is greater than that of TiB_(2)/Al2O3 composite with 9 wt%C-TiB_(2)sintered at 1400°C and is directly proportional to the temperature.Besides,TiB_(2)/Al2O3 composite with 9 wt%S-TiB_(2)possesses a better MW absorption at 25–500°C,its effective absorption bandwidth(RL<-5 dB)can reach 4.2 GHz at 25–500°C.And the minimum reflection loss(RLmin)value reaches-43.41 dB at the temperature of 800°C with a thickness of 1.45 mm for TiB_(2)/Al2O3 composite with 9 wt%C-TiB_(2).Consequently,the satisfying absorbing layer(d<1.75 mm),flexural strength,heat stability and considerable high-temperature MW absorption ability grant TiB_(2)/Al2O3 ceramics practical applications as high-temperature microwave absorption materials(MAMs).展开更多
The design of the high-temperature microwave absorbing materials (MAMs) with temperature-insensitive and considerable microwave absorption (MA) capacity is a tremendous challenge.Ti B2-Al_(2)O_(3)/Mg Al_(2)O_(4) MAMs ...The design of the high-temperature microwave absorbing materials (MAMs) with temperature-insensitive and considerable microwave absorption (MA) capacity is a tremendous challenge.Ti B2-Al_(2)O_(3)/Mg Al_(2)O_(4) MAMs are prepared by the spark plasma sintering (SPS).Further,the influences of the Al_(2)O_(3) content on the flexural strength,thermal stability,high-temperature electrical conductivity,dielectric and MA properties are discussed.The results show that the Al_(2)O_(3) content is associated with flexural strength,high-temperature thermal stability,electrical conductivity,dielectric and MA properties.Meanwhile,the temperatureinsensitive and considerable MA properties with the minimum reflection loss (RLmin) ranging from -19.4 to -14.3 dB and the effective absorption bandwidth (EAB,RL<-5 dB) of 3.19–3.55 GHz are attained at 25°C–700°C in 8.2–12.4 GHz as the Al_(2)O_(3) content increases from 70.6 wt%to 80.6 wt%.This is ascribed to the compensating effect of the positive and negative temperature coefficient materials on the high-temperature electrical conductivity as well as the co-play of the dipolar and interfacial polarization at elevated temperatures.Consequently,Ti B2-Al_(2)O_(3)/Mg Al_(2)O_(4) ceramics exhibit the ideal prospect as the high-temperature MAMs.展开更多
基金Project(2010JK404) supported by the Education Committee Natural Science Foundation of Shaanxi Province,ChinaProjects(ZK0918,ZK0915) supported by the Baoji University of Arts and Sciences Key Research,China
文摘The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement with the experimental data and previous theoretical values.All these borides are found to be mechanically stable at ambient pressure.Compared with parent metal Ti (120 GPa),the larger bulk modulus of these borides increase successively with the increase of the boron content in three borides,which may be due to direction bonding introduced by the boron atoms in the lattice and the strong covalent Ti-B bonds.Additionally,TiB can be regarded as a candidate of incompressible and hard material besides TiB2.Furthermore,the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli.Electronic density of states and atomic Mulliken charges analysis show that chemical bonding in these titanium borides is a complex mixture of covalent,ionic,and metallic characters.
基金Project(07JJ3102)supported by the Natural Science Foundation of Hunan Province,ChinaProject(k0902132-11)supported by the Changsha Municipal Science and Technology,China
文摘The equilibrium lattice parameters, electronic structure, bulk modulus, Debye temperature, heat capacity and Gibbs energy of TiB and TiB2 were investigated using the pseudopotential plane-wave method based on density functional theory (DFT) and the improved quasi-harmonic Debye method. The results show that the total density of states (DOS) of TiB2 is mainly provided by the orbit hybridization of Ti-3d and B-2p states, and the total DOS of TiB is mainly provided by the hybrids bond of Ti-3d and B-2p below the Fermi level and Ti—Ti bond up to the Fermi level. The Ti—B hybrid bond in TiB2 is stronger than that in TiB. Finally, the enthalpy of formation at 0 K, heat capacity and Gibbs free energy of formation at various temperatures were determined. The calculated results are in excellent agreement with the available experimental data.
基金Iran National Science Foundation(INSF)for supporting the research under project No.95841122.
文摘The effects of boride coating on the bioactivity, antibacterial activity, and electrochemical behavior of commercially pure titanium(CP-Ti) in phosphate buffer solution(PBS) with bovine serum albumin(BSA) were studied. The grazing incidence X-ray diffraction(GIXRD) pattern confirmed the formation of a Ti B/Ti B2 coating via boriding process. Scanning electron microscopy(SEM) observation indicated that the Ti B2 cross-linked particles covered the Ti B whiskers. Water contact angle measurements revealed that boriding led to the formation of a surface with intermediate water affinity. Potentiodynamic polarization(PDP) assays demonstrated that the Ti B/Ti B2 coating had acceptable passivation behavior in BSA-containing PBS. Electrochemical impedance spectroscopy(EIS) measurements revealed that the passivation behavior of the CP-Ti and the borided samples was improved by increasing exposure time. Based on the Mott-Schottky(M-S) tests, it was realized that the charge carriers of passive films of both samples decreased with increasing exposure time in BSA-containing PBS. The bioactivity test results in a simulated body fluid showed that the Ti B/Ti B2 coating switched the CP-Ti from bioinert to bioactive material. Finally, the antibacterial activity test of the Ti B/Ti B2 coating against Escherichia coli and Staphylococcus aureus indicated 99% antibacterial activity.
基金funding from the NATO Agency Science for Peace and Security (#G5787)Ballistic investigations were co-financed by Military University of Technology in Warsaw under research project UGB 829/2023/WATSeparate works made in G.V.Kurdyumov Institute for Metal Physics of N.A.S.of Ukraine were partially financially supported by N.A.S.of Ukraine within the frames of project#III09-18。
文摘Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.
基金Prject(20111D0503200316)supported by the Programme for Peking Excellent Talents in University,ChinaProject(613135)supported by 973 Defence Plan of China
文摘TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite.
基金financial support from the Indian Institute of Technology Bhubaneswar under the SEED project grant for fabricating the "cooling slope casting" experimental setupthe support extended by Central Research Facility (CRF), Indian Institute of Technology Kharagpur, toward the facility for conducting DTA experiments
文摘The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.
基金the National Natural Science Foundation of China(Grant Nos.61701185&61801186)。
文摘TiB_(2)/Al2O3 ceramics reinforced with Mg O are prepared by spark plasma sintering(SPS).The dielectric and microwave(MW)absorption properties are discussed.The results indicate that both the commercial TiB_(2)(C-TiB_(2))content and preparing temperature play important roles in the dielectric properties.Simultaneously,TiB_(2)/Al2O3 composite shows the best MW absorption property when the C-TiB_(2)content and preparing temperature are 9 wt%and 1400°C.To further improve the MW absorption properties,the composite containing 9 wt%synthesized TiB_(2)(S-TiB_(2))has been sintered at 1400°C.Its high-temperature complex permittivity is greater than that of TiB_(2)/Al2O3 composite with 9 wt%C-TiB_(2)sintered at 1400°C and is directly proportional to the temperature.Besides,TiB_(2)/Al2O3 composite with 9 wt%S-TiB_(2)possesses a better MW absorption at 25–500°C,its effective absorption bandwidth(RL<-5 dB)can reach 4.2 GHz at 25–500°C.And the minimum reflection loss(RLmin)value reaches-43.41 dB at the temperature of 800°C with a thickness of 1.45 mm for TiB_(2)/Al2O3 composite with 9 wt%C-TiB_(2).Consequently,the satisfying absorbing layer(d<1.75 mm),flexural strength,heat stability and considerable high-temperature MW absorption ability grant TiB_(2)/Al2O3 ceramics practical applications as high-temperature microwave absorption materials(MAMs).
基金the National Natural Science Foundation of China(Grant Nos.61701185 and 61801186)the Natural Science Foundation of Hubei Province(Grant Nos.2020CFB509 and2020CFB511)。
文摘The design of the high-temperature microwave absorbing materials (MAMs) with temperature-insensitive and considerable microwave absorption (MA) capacity is a tremendous challenge.Ti B2-Al_(2)O_(3)/Mg Al_(2)O_(4) MAMs are prepared by the spark plasma sintering (SPS).Further,the influences of the Al_(2)O_(3) content on the flexural strength,thermal stability,high-temperature electrical conductivity,dielectric and MA properties are discussed.The results show that the Al_(2)O_(3) content is associated with flexural strength,high-temperature thermal stability,electrical conductivity,dielectric and MA properties.Meanwhile,the temperatureinsensitive and considerable MA properties with the minimum reflection loss (RLmin) ranging from -19.4 to -14.3 dB and the effective absorption bandwidth (EAB,RL<-5 dB) of 3.19–3.55 GHz are attained at 25°C–700°C in 8.2–12.4 GHz as the Al_(2)O_(3) content increases from 70.6 wt%to 80.6 wt%.This is ascribed to the compensating effect of the positive and negative temperature coefficient materials on the high-temperature electrical conductivity as well as the co-play of the dipolar and interfacial polarization at elevated temperatures.Consequently,Ti B2-Al_(2)O_(3)/Mg Al_(2)O_(4) ceramics exhibit the ideal prospect as the high-temperature MAMs.