期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Temperature dependence of dielectric breakdown of silicone-based dielectric elastomers 被引量:1
1
作者 Liyun Yu Sindhu Vudayagiri +1 位作者 Lucy Ajakaiye Jensen Anne Ladegaard Skov 《International Journal of Smart and Nano Materials》 SCIE EI 2020年第2期129-146,共18页
A large number of insulation/dielectric failures in power systems are related to thermally-induced dielectrical breakdown,also known as‘thermal breakdown’,at higher operating temperatures.In this work,the thermal br... A large number of insulation/dielectric failures in power systems are related to thermally-induced dielectrical breakdown,also known as‘thermal breakdown’,at higher operating temperatures.In this work,the thermal breakdown behavior of typical silicone formulations,used as dielectrics in stretchable electronic devices,is analyzed at practically relevant operating temperatures ranging from 20℃ to 80℃.An effective way of delaying the thermal breakdown of insulating materials is to blend micro-or nano-sized inorganic particles with high thermal conductivity,to dissipate better any losses generated during energy transduction.Therefore,two types of commercial silicone formulations,blended with two types of rutile hydrophobic,high-dielectric TiO_(2) fillers,are investigated in relation to their dielectric properties,namely,relative permittivity,the dissipation factor,and electrical breakdown strength.The breakdown strengths of these silicone composites are subsequently evaluated using Weibull analysis,which indicates a negative correlation between temperature and shape parameter for all compositions,thus illustrating that the homogeneity of the samples decreases in line with temperature,but the breakdown strengths nevertheless increase initially due to the trapping effect from the high-permittivity fillers. 展开更多
关键词 Silicone elastomers titanium dioxide fillers dielectric breakdown strength Weibull TEMPERATURE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部