The relationship between hydrolysis conditions and hydrous titania polymorphs obtained in a titanyl sulfate and sulfmic acid solu- tion was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM...The relationship between hydrolysis conditions and hydrous titania polymorphs obtained in a titanyl sulfate and sulfmic acid solu- tion was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron micros- copy (HRTEM). The results revealed that the feeding rate of the titanyl sulfate stock solution, the concentration of sulfi.Lric acid, and the seed dosage of mtile crystal could significantly affect the hydrolysis rate, thus influencing the titania crystal phase. Hydrous TiO2 in the form of rutile, anatase, or the mixture of both could be obtained in solutions of low titanium concentrations and 2.5wt% to 15wt% sulfuric acid at 100℃. When the hydrolysis rate of titanitma expressed by TiOa was more than or equal to 0.04 g/(L.min), the hydrolysate was almost phase-pure anatase, while the main phase state was rutile when the hydrolysis rate was less than or equal to 0.01 g/(L.min). With the hy- drolysis rate between 0.02 and 0.03 g/(L.min), the hydrolysate contained almost equal magnitude ofrutile and anatase. It seems that although rutile phase is thermodynamically stable in very acidic solutions, anatase is a kinetically stable phase.展开更多
A new potential energy surface (PES) for the atmospheric formation of sulfuric acid from OH+SO2 is investigated using density functional theory and high-level ab initio molecular orbital theory. A pathway focused o...A new potential energy surface (PES) for the atmospheric formation of sulfuric acid from OH+SO2 is investigated using density functional theory and high-level ab initio molecular orbital theory. A pathway focused on the new PES assumes the reaction to take place between the radical complex SO3.HO2 and H2O. The unusual stability of SO3.HO2 is the principal basis of the new pathway, which has the same final outcome as the current reaction mechanism in the literature but it avoids the production and complete release of SO3. The entire reaction pathway is composed of three consecutive elementary steps: (1) HOSO2+O2-+SO3.HO2, (2) SO3.HO2+H20-+SO3·H2O·HO2, (3) SO3.H20.HO2-+H2SO4+HO2. All three steps have small energy barriers, under 10 kcal/rnol, and are exotherrnic, and the new pathway is there- fore favorable both kinetically and therrnodynarnically. As a key step of the reactions, step (3), HO2 serves as a bridge molecule for low-barrier hydrogen transfer in the hydrolysis of SO3. Two significant atmospheric implications are expected frorn the present study. First, SO3 is not released from the oxidation of SO2 by OH radical in the atmosphere. Second, the conversion of SO2 into sulfuric acid is weakly dependent on the humidity of air.展开更多
基金financially supported by a grant from the Ph.D. Programs Foundation of the Ministry of Education of China (No.20070610125)
文摘The relationship between hydrolysis conditions and hydrous titania polymorphs obtained in a titanyl sulfate and sulfmic acid solu- tion was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron micros- copy (HRTEM). The results revealed that the feeding rate of the titanyl sulfate stock solution, the concentration of sulfi.Lric acid, and the seed dosage of mtile crystal could significantly affect the hydrolysis rate, thus influencing the titania crystal phase. Hydrous TiO2 in the form of rutile, anatase, or the mixture of both could be obtained in solutions of low titanium concentrations and 2.5wt% to 15wt% sulfuric acid at 100℃. When the hydrolysis rate of titanitma expressed by TiOa was more than or equal to 0.04 g/(L.min), the hydrolysate was almost phase-pure anatase, while the main phase state was rutile when the hydrolysis rate was less than or equal to 0.01 g/(L.min). With the hy- drolysis rate between 0.02 and 0.03 g/(L.min), the hydrolysate contained almost equal magnitude ofrutile and anatase. It seems that although rutile phase is thermodynamically stable in very acidic solutions, anatase is a kinetically stable phase.
基金partially funded by National Science Foundation of the United States(No.1012994)by California State University,Fullerton
文摘A new potential energy surface (PES) for the atmospheric formation of sulfuric acid from OH+SO2 is investigated using density functional theory and high-level ab initio molecular orbital theory. A pathway focused on the new PES assumes the reaction to take place between the radical complex SO3.HO2 and H2O. The unusual stability of SO3.HO2 is the principal basis of the new pathway, which has the same final outcome as the current reaction mechanism in the literature but it avoids the production and complete release of SO3. The entire reaction pathway is composed of three consecutive elementary steps: (1) HOSO2+O2-+SO3.HO2, (2) SO3.HO2+H20-+SO3·H2O·HO2, (3) SO3.H20.HO2-+H2SO4+HO2. All three steps have small energy barriers, under 10 kcal/rnol, and are exotherrnic, and the new pathway is there- fore favorable both kinetically and therrnodynarnically. As a key step of the reactions, step (3), HO2 serves as a bridge molecule for low-barrier hydrogen transfer in the hydrolysis of SO3. Two significant atmospheric implications are expected frorn the present study. First, SO3 is not released from the oxidation of SO2 by OH radical in the atmosphere. Second, the conversion of SO2 into sulfuric acid is weakly dependent on the humidity of air.