期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ballistic performance of titanium-based layered composites made using blended elemental powder metallurgy and hot isostatic pressing
1
作者 Pavlo Markovsky Jacek Janiszewski +5 位作者 Dmytro Savvakin Oleksandr Stasyuk Bartosz Fikus Victor Samarov Vianey Ellison Sergey V.Prikhodko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期1-14,共14页
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to... Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually. 展开更多
关键词 Metal matrix composites powder metallurgy titanium hydride powder Master alloy titanium carbide titanium boride Hot isostatic pressing Ballistic tests
下载PDF
Preparation of TiAl alloy powder by high-energy ball milling and diffusion reaction at low temperature 被引量:8
2
作者 Hui-Ping Shao Zhi Wang +2 位作者 Tao Lin Qing Ye Zhi-Meng Guo 《Rare Metals》 SCIE EI CAS CSCD 2018年第1期21-25,共5页
In this paper, TiAl alloy powders were prepared successfully by high-energy ball milling and diffusion reaction in vacuum at low temperature. The titanium powder, aluminum powder, and titanium hydride powder were used... In this paper, TiAl alloy powders were prepared successfully by high-energy ball milling and diffusion reaction in vacuum at low temperature. The titanium powder, aluminum powder, and titanium hydride powder were used as raw materials. The samples were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), field-emission scanning electron microscopy(FESEM), and differential thermal analysis(DTA). The results show that the alloy powders with the main intermetallic compounds of TiAl are obtained using Ti-Al powders and TiH2-Al powders after heated for 2 h at 500 ℃,3 h at 600 ℃,and 3 h at 750 ℃,respectively.The average grain sizes of alloy powder are about 45 and20 μm with irregular shape, respectively. The prepared TiAl alloy powders are relatively pure, and the average quality content of oxygen in the alloy powders is0.33 wt%. The forming process of alloy powder contains both the diffusion reaction of Ti and Al,which gives priority to the diffusion reaction of aluminum. 展开更多
关键词 High-energy ball milling titanium hydride powder titanium powder TiAl alloy powder Diffusion reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部