Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to expl...Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to explore more effective approaches for the treatment of MRSA biofilm infections.Methods:Herein,an interfacial functionalization strategy is proposed by the integration of mesoporous polydopamine nanoparticles(PDA),nitric oxide(NO)release donor sodium nitroprusside(SNP)and osteogenic growth peptide(OGP)onto Ti implants,denoted as Ti-PDA@SNP-OGP.The physical and chemical properties of Ti-PDA@SNP-OGP were assessed by scanning electron microscopy,X-ray photoelectron spectroscope,water contact angle,photothermal property and NO release behavior.The synergistic antibacterial effect and elimination of the MRSA biofilms were evaluated by 2′,7′-dichlorofluorescein diacetate probe,1-N-phenylnaphthylamine assay,adenosine triphosphate intensity,O-nitrophenyl-β-D-galactopyranoside hydrolysis activity,bicinchoninic acid leakage.Fluorescence staining,assays for alkaline phosphatase activity,collagen secretion and extracellular matrix mineralization,quantitative real‑time reverse transcription‑polymerase chain reaction,and enzyme-linked immunosorbent assay(ELISA)were used to evaluate the inflammatory response and osteogenic ability in bone marrow stromal cells(MSCs),RAW264.7 cells and their co-culture system.Giemsa staining,ELISA,micro-CT,hematoxylin and eosin,Masson's trichrome and immunohistochemistry staining were used to evaluate the eradication of MRSA biofilms,inhibition of inflammatory response,and promotion of osseointegration of Ti-PDA@SNP-OGP in vivo.Results:Ti-PDA@SNP-OGP displayed a synergistic photothermal and NO-dependent antibacterial effect against MRSA following near-infrared light(NIR)irradiation,and effectively eliminated the formed MRSA biofilms by inducing reactive oxygen species(ROS)-mediated oxidative stress,destroying bacterial membrane integrity and causing leakage of intracellular components(P<0.01).In vitro experiments revealed that Ti-PDA@SNP-OGP not only facilitated osteogenic differentiation of MSCs,but also promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype(P<0.05 or P<0.01).The favorable osteo-immune microenvironment further facilitated osteogenesis of MSCs and the anti-inflammation of RAW264.7 cells via multiple paracrine signaling pathways(P<0.01).In vivo evaluation confirmed the aforementioned results and revealed that Ti-PDA@SNP-OGP induced ameliorative osseointegration in an MRSA-infected femoral defect implantation model(P<0.01).Conclusions:Ti-PDA@SNP-OGP is a promising multi-functional material for the high-efficient treatment of MRSA infections in implant replacement surgeries.展开更多
In this study,the workability of cement-based grouts containing n-TiO 2 nanoparticles and fly ash has been investigated experimentally.Several characteristic quantities(including,but not limited to,the marsh cone flow...In this study,the workability of cement-based grouts containing n-TiO 2 nanoparticles and fly ash has been investigated experimentally.Several characteristic quantities(including,but not limited to,the marsh cone flow time,the mini slump spreading diameter and the plate cohesion meter value)have been measured for different percentages of these additives.The use of fly ash as a mineral additive has been found to result in improvements in terms of workability behavior as expected.Moreover,if nano titanium oxide is also used,an improvement can be obtained regarding the bleeding values for the cement-based grout mixes.Using such experimental data,a multi-layer perceptron artificial neural network model has been developed(5 neurons in the hidden layer of the network model have been developed using a total of 42 experimental data).70%of the data employed in this model have been used for training,15%for validation and 15%for the test phase.The results demonstrate that the artificial neural network model can predict Marsh cone flow time,mini slump spreading diameter and plate cohesion meter values with an average error of 0.15%.展开更多
In this study,three-dimensional porous magnesium ferrite/titanium dioxide/reduced graphene oxide(Mg Fe_2O_(4)-GM/TiO_(2)/rGO(MGTG))was successfully synthesized via green and hydrothermal-supported co-precipitation met...In this study,three-dimensional porous magnesium ferrite/titanium dioxide/reduced graphene oxide(Mg Fe_2O_(4)-GM/TiO_(2)/rGO(MGTG))was successfully synthesized via green and hydrothermal-supported co-precipitation methods using the extract of Garcinia mangostana(G.mangostana)as a reducing agent.The characterization results indicate the successful formation of the nano/micro Mg Fe_(2)O_(4)(MFO)and TiO_(2) on the structure of the reduced graphene oxide(rGO),which can also act as efficient support,alleviating the agglomeration of the nano/micro MFO and TiO_(2).The synergic effects of the adsorption and photodegradation activity of the material were investigated according to the removal of crystal violet(CV)under ultraviolet light.The effects of catalyst dosage,CV concentration,and p H on the CV removal efficiency of the MGTG were also investigated.According to the results,the CV photodegradation of the MGTG-200 corresponded to the pseudo-first-order kinetic model.The reusability of the material after 10 cycles also showed a removal efficiency of 92%.This happened because the materials can easily be recollected using external magnets.In addition,according to the effects of different free radicals·O_(2)^(-),h^(+),and·OH on the photodegradation process,the photocatalysis mechanism of the MGTG was also thoroughly suggested.The antibacterial efficiency of the MGTG was also evaluated according to the inhibition of the Gram-positive bacteria strain Staphylococcus aureus(S.aureus).Concurrently,the antibacterial mechanism of the fabricated material was also proposed.These results confirm that the prepared material can be potentially employed in a wide range of applications,including wastewater treatment and antibacterial activity.展开更多
In order to remove nitric oxides (NO) from flue gas, experimental studies on the photocatalytic oxidation (PCO) of NO are carried out in an efficient laboratory-scale reactor. Nano-sized TiO2 particles loading on ...In order to remove nitric oxides (NO) from flue gas, experimental studies on the photocatalytic oxidation (PCO) of NO are carried out in an efficient laboratory-scale reactor. Nano-sized TiO2 particles loading on quartz sand are prepared and used as the photocatalyst. Effects of several key operating parameters on NO conversion are investigated, including operating temperature, NO inlet concentration, oxygen percentage, relative humidity and residence time. The results illustrate that the NO inlet concentration, the oxygen percentage and the relative humidity play an important role in the oxidation of NO. A lower NO inlet concentration and a higher oxygen percentage result in a higher NO conversion efficiency. When the relative humidity is 8%, the maximum value of NO conversion efficiency is achieved. In addition, the operating temperature and the residence time have a little effect on the conversion efficiency of NO.展开更多
Titanium oxide thin films were prepared on self-assembled monolayers-coated silicon substrate using layer-by-layer self-assembly method and chemical bath deposition from an aqueous solution. The effects of temperature...Titanium oxide thin films were prepared on self-assembled monolayers-coated silicon substrate using layer-by-layer self-assembly method and chemical bath deposition from an aqueous solution. The effects of temperature on structural properties, thickness and morphologies of titanium oxide thin films were investigated. The results show that the absorption peak of peroxo complexes of titanium at 410 nm decreases gradually with increasing the temperature. The deposited films consisting of titanium oxide nanocrystals are believed to be fully amorphous by XRD. Titanium oxide thin films fabricated at 60 °C for 2 h are continuous, dense and homogeneous with a size in the range of 20-40 nm by SEM. The chemical compositions of deposited thin films were studied by EDS, and the mole ratio of O to Ti is 2.2:1.展开更多
Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characte...Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results showed that the films were thick, uniform, and nontransparent. Such films exhibited sedimentary morphology, with a thickness of about 3 μm, and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm. The films were mainly titanium dioxide. Some coke-like deposits, which may contain or be changed by OH, NH, C-C, C-O, and C=O groups, were doped in the films. The films were mainly amorphous with a small amount of anatase and rutile phase.展开更多
Effects of different facing oxides, including including yttria colloidal and powders (Y/Y), yttria stabilized zirconia colloidal and powders (ZY/ZY), zirconia colloidal and powders (Z/Z) and zirconia colloidal and zi...Effects of different facing oxides, including including yttria colloidal and powders (Y/Y), yttria stabilized zirconia colloidal and powders (ZY/ZY), zirconia colloidal and powders (Z/Z) and zirconia colloidal and zireonite powders (Z/ZS) on the qualities of investment castings are studied. The outward appearance, microstructures, and microhardness profiles of castings made of commercial pure titanium, Ti--Al--V and Ti--Al--Zr are investigated. Castings made by shells with yttria as face materials have the least contamination and by zirconite shells have the most contamination. Thermodynamic of metal-mold reactions is also taken into consideration.展开更多
Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its appli...Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its application in the bond coat of duplex structure thermal barrier coating(TBC). Three kinds of NiCoCrAlY coatings strengthened by different nano-particles with the same addition (1%, mass fraction) were prepared by the laser cladding technique on Ni-based superalloy substrates, aiming to study the effects of the nano-particles on microstructure and oxidation resistance of NiCoCrAlY coatings (the bond coat of the duplex structure thermal barrier coatings). Scanning electron microscope (SEM), X-ray diffractometer(XRD) and thermogravimetry were employed to investigate their morphologies, phases and cyclic oxidation behaviors in atmosphere at 1 050℃, compared with the coating without nano-particles. With the addition of nano-particles, the growth pattern of the grains at the interface changed from epitaxial growth to non-epitaxial growth or part-epitaxial growth; slender dendrites were broken and cellularized; cracks and pores were restrained; and the oxidation weight-gain and the stripping resistance of the oxide scale were improved as well. Among the three kinds of nano-particles, the SiC nano-particles showed the most improvement on microstructure, while the CeO2 nano-particles were insufficient, but its effects on the oxidation resistance are the same as those of the SiC nano-particles. Based on the discussions of the influence mechanism, it is believed that CeO2 nano-particles would show better improvement than SiC nano-particles if the proper amount is added and the proper preparation technique of micro-nanometer composite powders is adopted, with the synergistic action of nanometer effect and reactive element effect.展开更多
Effects of titanium oxide (TiO 2) nanoparticles on Bel-7402 human hepatoma cells and L-02 human hepatocytes at different times were observed.Using cell culture,cell growth curves of Bel-7402 cells and L-02 cells trea...Effects of titanium oxide (TiO 2) nanoparticles on Bel-7402 human hepatoma cells and L-02 human hepatocytes at different times were observed.Using cell culture,cell growth curves of Bel-7402 cells and L-02 cells treated with TiO 2 nanoparticles were examined by MTT assay,and the cellular ultrastructure was observed by an analytical transmission electron microscope (ATEM).It is found that OD value of Bel-7402 cell treated with TiO 2 nanoparticles for 48-144h is obviously lower than that of control group (p<0.01).However the growth curve of L-02 cells is almost not affected by TiO 2 nanoparticles.ATEM and energy dispersive X ray (EDX) analyses show that there are obvious vacuoles increased heterolysosome,and particles with high electron density which are confirmed to be TiO 2 nanoparticles in Bel-7402 cytoplasm.More interestingly,it is alse found that TiO 2 nanoparticle obviously inhibits the proliferation of hepatoma cells by altering lysosome activity and destroying cytoplasm structure.The inhibition on proliferation of hepatocytes by TiO 2 nanoparticles is much slighter.The results demonstrate that TiO 2 nanoparticle has different killing effects on cancer cell and normal cell.展开更多
Micro arc oxidation(MAO) coatings doped with graphene oxide(GO) were prepared on pure titanium by adding GO and sodium dodecyl benzene sulfonate(SDBS) into a sodium silicate solution. The as-deposited coatings were co...Micro arc oxidation(MAO) coatings doped with graphene oxide(GO) were prepared on pure titanium by adding GO and sodium dodecyl benzene sulfonate(SDBS) into a sodium silicate solution. The as-deposited coatings were comparatively analyzed by scanning electron microscopy(SEM), energydispersive X-ray spectroscopy(EDS) and X-ray diffraction(XRD). The binding forces of the MAO, MAO+GO and MAO+GO+SDBS three coatings were measured by a scratch tester. The mechanical property of the three coatings was analyzed using the nano-indentation technique. The corrosion resistance of the coatings was tested by the electrochemical system in 3.5% NaCl solution. The photocatalytic activity of the prepared samples was evaluated by determining the degradation of methylene blue(MB) solution. The results showed that compared to the MAO coating, the morphologies and phase compositions of MAO+GO and MAO+GO+SDBS composite coatings were significantly different. These two composite coatings all had superior photocatalytic activity. Especially, the MAO+GO composite coating still had enhanced binding force and excellent corrosion resistance. Furthermore, the relationship between the microstructure and the properties of these three MAO coatings was analyzed.展开更多
The different investigation has been carried out on the biological activities of titanium dioxide nanoparticle but the effect of this nano product on the antibacterial activity of different antibiotics has not been ye...The different investigation has been carried out on the biological activities of titanium dioxide nanoparticle but the effect of this nano product on the antibacterial activity of different antibiotics has not been yet demonstrated. In this study the nano size TiO2 is synthesized using citric acid and alpha dextrose and the enhancement effect of TiO2 nanoparticle on the antibacterial activity of different antibiotics was evaluated against Methicillin-resistant Staphylococcus aureus (MRSA). During the present study, different concentrations of nano-scale TiO2 were tested to find out the best concentration that can have the most effective antibacterial property against the MRSA culture. Disk diffusion method was used to determine the antibacterial activity of these antibiotics in the absence and presence of sub inhibitory concentration of TiO2 nano particle. A clinical isolate of MRSA, isolated from Intensive Care Unit (ICU) was used as test strain. In the presence of sub-inhibitory concentration of TiO2 nanoparticle (20 μg/disc) the antibacterial activities of all antibiotics have been increased against test strain with minimum 2 mm to maximum 10mm. The highest increase in inhibitory zone for MRSA was observed against pencillin G and amikacin (each 10 mm). Conversely, in case of nalidixic acid, TiO2 nanoparticle showed a Synergic effect on the antibacterial activity of this antibiotic against test strain. These results signify that the TiO2 nanoparticle potentate the antimicrobial action of beta lactums, cephalosporins, aminoglycosides, glycopeptides, macrolids and lincosamides, tetracycline a possible utilization of nano compound in combination effect against MRSA.展开更多
The chemical stripping method of titanium alloy oxide films was studied. An environment friendly solution hydrogen peroxide and sodium hydroxide without hydrofluoric acid or fluoride were used to strip the oxide films...The chemical stripping method of titanium alloy oxide films was studied. An environment friendly solution hydrogen peroxide and sodium hydroxide without hydrofluoric acid or fluoride were used to strip the oxide films. The morphologies of the surface and cross-section of the oxide films before and after the films stripping were characterized by using scanning electron microscopy (SEM). The microstructure and chemical compositions of the oxide films before and after the films stripping were investigated by using Raman spectroscopy (Raman) and X-ray photoelectron spectroscopy (XPS). It was shown that the thickness of the oxide film was in the range of 5-6 μm. The oxide films were stripped for 2 to 8 min in the solution. Moreover, the effect of the stripping time on the efficiency of the film stripping was investigated, and the optimum stripping time was between 6-8 min. When the stripping solution completely dissolved the whole film, the α/β microstructure of the titanium alloy Ti-10V-2Fe-3Al was partly revealed. The stripping mechanism was discussed in terms of the dissolution of film delamination. The hydrogen peroxide had a significant effect on the dissolution of the titanium alloy anodic oxide film. The feasibility of the dissolution reaction also was evaluated.展开更多
We present an enhancement of the fluorescence of shallow(<10 nm) nitrogen-vacancy(NV^-)centers by using atomic layer deposition to deposit titanium oxide layers on the diamond surface. In this way, the shallow NV-c...We present an enhancement of the fluorescence of shallow(<10 nm) nitrogen-vacancy(NV^-)centers by using atomic layer deposition to deposit titanium oxide layers on the diamond surface. In this way, the shallow NV-center charge states were stabilized, leading to the increasing fluorescence intensity of about 2 times. This surface coating technique could produce a protective layer of controllable thickness without any damages to the solid-state quantum system surface, which might be an approach to the further passivation or packaging techniques for the solid-state quantum devices.展开更多
Niobium doped titanium oxide (TiO2) colloid was synthesized to fabricate a hydrogen gas sensor layer on oxidized silicon wafer substrate. The layers were obtained using spin coating technique and then heated in air at...Niobium doped titanium oxide (TiO2) colloid was synthesized to fabricate a hydrogen gas sensor layer on oxidized silicon wafer substrate. The layers were obtained using spin coating technique and then heated in air at 500°C for 30 min. The doping of TiO2 led to a significant enhancement of the sensitivity of the layer especially at low operating temperature. The effect of doping was found effective of operating the sensor at relatively low temperature (150°C). The layers show a very smooth nanostructure with average roughness of less than 0.5 nm. The behavior of the sensing characteristics of such layers was discussed related to their chemical compositions, morphology and their crystalline structure. The morphological and structural characteristics of the layers were studied through X-ray diffraction (XRD) and Atomic force microscopy (AFM).展开更多
A simple and effective method of removing polluted organics in water is reported here.Titanium dioxide is a catalyst in photo-oxidation of monocrotophos.The mechanism of photocatalytic oxidation and the kinetics of th...A simple and effective method of removing polluted organics in water is reported here.Titanium dioxide is a catalyst in photo-oxidation of monocrotophos.The mechanism of photocatalytic oxidation and the kinetics of the reaction were studied. This same principle also leads to the construction of instrument of PTR-FIA analysis for monitoring organic phosphorus and phosphate in water.展开更多
Titanium oxide film with a graded interface to NiTi matrix was synthesized in situ on NiTi shape memory alloy(SMA) by oxidation in H2O2 solution. In vitro studies including contact angle measurement, hemolysis, MTT cy...Titanium oxide film with a graded interface to NiTi matrix was synthesized in situ on NiTi shape memory alloy(SMA) by oxidation in H2O2 solution. In vitro studies including contact angle measurement, hemolysis, MTT cytotoxicity and cell morphology tests were employed to investigate the biocompatibility of the H2O2-oxidized NiTi SMAs with this titanium oxide film. The results reveal that wettability, blood compatibility and fibroblasts compatibility of NiTi SMA are improved by the coating of titanium oxide film through H2O2 oxidation treatment.展开更多
The trade-off between efficiency and stability has limited the application of TiO_(2)as a catalyst due to its poor surface reactivity.Here,we present a modification of a TiO_(2)layer with highly stable Sub-5 nm Fe_(2)...The trade-off between efficiency and stability has limited the application of TiO_(2)as a catalyst due to its poor surface reactivity.Here,we present a modification of a TiO_(2)layer with highly stable Sub-5 nm Fe_(2)O_(3)nanoparticles(NP)by modulating its structure-surface reactivity relationship to attain efficiency-stability balance via a voltage-assisted oxidation approach.In situ simultaneous oxidation of the Ti substrate and Fe precursor using high-energy plasma driven by high voltage resulted in uniform distribution of Fe_(2)O_(3)NP embedded within porous TiO_(2)layer.Comprehensive surface characterizations with density functional theory demonstrated an improved electronic transition in TiO_(2)due to the presence of surface defects from reactive oxygen species and possible charge transfer from Ti to Fe;it also unexpectedly increased the active site in the TiO_(2)layer due to uncoordinated electrons in Sub-5 nm Fe_(2)O_(3)NP/TiO_(2)catalyst,thereby enhancing the adsorption of chemical functional groups on the catalyst.This unique embedded structure exhibited remarkable improvement in reducing 4-nitrophenol to 4-aminophenol,achieving approximately 99%efficiency in 20 min without stability decay after 20 consecutive cycles,outperforming previously reported TiO_(2)-based catalysts.This finding proposes a modified-electrochemical strategy enabling facile construction of TiO_(2)with nanoscale oxides extandable to other metal oxide systems.展开更多
Titanium oxide films were prepared by annealing DC magnetron sputtered titanium films in an oxygen ambient. X-ray diffraction (XRD), Auger electron spectroscopy (AES) sputter profiling, MCs^+-mode secondary ion m...Titanium oxide films were prepared by annealing DC magnetron sputtered titanium films in an oxygen ambient. X-ray diffraction (XRD), Auger electron spectroscopy (AES) sputter profiling, MCs^+-mode secondary ion mass spectrometry (MCs^+-SIMS) and atomic force microscopy (AFM) were employed, respectively, for the structural, com- positional and morphological characterization of the obtained films. For temperatures below 875 K, titanium films could not be fully oxidized within one hour. Above that temperature, the completely oxidized films were found to be rutile in structure. Detailed studies on the oxidation process at 925K were carried out for the understanding of the underlying mechanism of titanium dioxide (TiO2) formation by thermal oxidation. It was demonstrated that the formation of crystalline TiO2 could be divided into a short oxidation stage, followed by crystal forming stage. Relevance of this recognition was further discussed.展开更多
We study the extended gate ion sensitive structure,and deposit the titanium oxide (TiO_2) thin film on p-type (100) silicon substrate.The device of the hydrogen ion sensing structure is TiO_2/Si-substrate,and a commer...We study the extended gate ion sensitive structure,and deposit the titanium oxide (TiO_2) thin film on p-type (100) silicon substrate.The device of the hydrogen ion sensing structure is TiO_2/Si-substrate,and a commercial device of the metal oxide semiconductor field effect transistor (MOSFET) is connected to the separative sensing device.The sensitivity and linearity are measured under different work pressures.When the mixed ratio of Ar/O_2 is 80 ml·min^(-1)/20 ml·min^(-1),the work pressure is 4 Pa,the sputtering power is 150 W,and the sputtering time is two hours,the better sensing properties of the sensitivity and linearity are 36.49 mV/pH and 0.99654,respectively.However,some instruments are analyzed the surface of TiO_2 membrane,such as X-ray diffraction (XRD) and Auger Electron Spectrometer (AES).The characteristics of TiO_2 thin film can be demonstrated.展开更多
基金financially supported by the National Natural Science Foundation of China(82101069,82102537,82160411,82002278)the Natural Science Foundation of Chongqing Science and Technology Commission(CSTC2021JCYJ-MSXMX0170,CSTB2022BSXM-JCX0039)+2 种基金the First Affiliated Hospital of Chongqing Medical University Cultivating Fund(PYJJ2021-02)the Beijing Municipal Science&Technology Commission(Z221100007422130)the Youth Incubation Program of Medical Science and Technology of PLA(21QNPY116).
文摘Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to explore more effective approaches for the treatment of MRSA biofilm infections.Methods:Herein,an interfacial functionalization strategy is proposed by the integration of mesoporous polydopamine nanoparticles(PDA),nitric oxide(NO)release donor sodium nitroprusside(SNP)and osteogenic growth peptide(OGP)onto Ti implants,denoted as Ti-PDA@SNP-OGP.The physical and chemical properties of Ti-PDA@SNP-OGP were assessed by scanning electron microscopy,X-ray photoelectron spectroscope,water contact angle,photothermal property and NO release behavior.The synergistic antibacterial effect and elimination of the MRSA biofilms were evaluated by 2′,7′-dichlorofluorescein diacetate probe,1-N-phenylnaphthylamine assay,adenosine triphosphate intensity,O-nitrophenyl-β-D-galactopyranoside hydrolysis activity,bicinchoninic acid leakage.Fluorescence staining,assays for alkaline phosphatase activity,collagen secretion and extracellular matrix mineralization,quantitative real‑time reverse transcription‑polymerase chain reaction,and enzyme-linked immunosorbent assay(ELISA)were used to evaluate the inflammatory response and osteogenic ability in bone marrow stromal cells(MSCs),RAW264.7 cells and their co-culture system.Giemsa staining,ELISA,micro-CT,hematoxylin and eosin,Masson's trichrome and immunohistochemistry staining were used to evaluate the eradication of MRSA biofilms,inhibition of inflammatory response,and promotion of osseointegration of Ti-PDA@SNP-OGP in vivo.Results:Ti-PDA@SNP-OGP displayed a synergistic photothermal and NO-dependent antibacterial effect against MRSA following near-infrared light(NIR)irradiation,and effectively eliminated the formed MRSA biofilms by inducing reactive oxygen species(ROS)-mediated oxidative stress,destroying bacterial membrane integrity and causing leakage of intracellular components(P<0.01).In vitro experiments revealed that Ti-PDA@SNP-OGP not only facilitated osteogenic differentiation of MSCs,but also promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype(P<0.05 or P<0.01).The favorable osteo-immune microenvironment further facilitated osteogenesis of MSCs and the anti-inflammation of RAW264.7 cells via multiple paracrine signaling pathways(P<0.01).In vivo evaluation confirmed the aforementioned results and revealed that Ti-PDA@SNP-OGP induced ameliorative osseointegration in an MRSA-infected femoral defect implantation model(P<0.01).Conclusions:Ti-PDA@SNP-OGP is a promising multi-functional material for the high-efficient treatment of MRSA infections in implant replacement surgeries.
基金funded by The Scientific and Technological Research Council of Turkey-TUBITAK[Grant No.219M522].
文摘In this study,the workability of cement-based grouts containing n-TiO 2 nanoparticles and fly ash has been investigated experimentally.Several characteristic quantities(including,but not limited to,the marsh cone flow time,the mini slump spreading diameter and the plate cohesion meter value)have been measured for different percentages of these additives.The use of fly ash as a mineral additive has been found to result in improvements in terms of workability behavior as expected.Moreover,if nano titanium oxide is also used,an improvement can be obtained regarding the bleeding values for the cement-based grout mixes.Using such experimental data,a multi-layer perceptron artificial neural network model has been developed(5 neurons in the hidden layer of the network model have been developed using a total of 42 experimental data).70%of the data employed in this model have been used for training,15%for validation and 15%for the test phase.The results demonstrate that the artificial neural network model can predict Marsh cone flow time,mini slump spreading diameter and plate cohesion meter values with an average error of 0.15%.
基金Ho Chi Minh City University of Technology (HCMUT),VNU-HCM for supporting this study。
文摘In this study,three-dimensional porous magnesium ferrite/titanium dioxide/reduced graphene oxide(Mg Fe_2O_(4)-GM/TiO_(2)/rGO(MGTG))was successfully synthesized via green and hydrothermal-supported co-precipitation methods using the extract of Garcinia mangostana(G.mangostana)as a reducing agent.The characterization results indicate the successful formation of the nano/micro Mg Fe_(2)O_(4)(MFO)and TiO_(2) on the structure of the reduced graphene oxide(rGO),which can also act as efficient support,alleviating the agglomeration of the nano/micro MFO and TiO_(2).The synergic effects of the adsorption and photodegradation activity of the material were investigated according to the removal of crystal violet(CV)under ultraviolet light.The effects of catalyst dosage,CV concentration,and p H on the CV removal efficiency of the MGTG were also investigated.According to the results,the CV photodegradation of the MGTG-200 corresponded to the pseudo-first-order kinetic model.The reusability of the material after 10 cycles also showed a removal efficiency of 92%.This happened because the materials can easily be recollected using external magnets.In addition,according to the effects of different free radicals·O_(2)^(-),h^(+),and·OH on the photodegradation process,the photocatalysis mechanism of the MGTG was also thoroughly suggested.The antibacterial efficiency of the MGTG was also evaluated according to the inhibition of the Gram-positive bacteria strain Staphylococcus aureus(S.aureus).Concurrently,the antibacterial mechanism of the fabricated material was also proposed.These results confirm that the prepared material can be potentially employed in a wide range of applications,including wastewater treatment and antibacterial activity.
基金The National High Technology Research Program of China (863 Program) (No. 2008AA05Z303)the Science and Technology Program of Jiangsu Province (No. BE2010184)the Environmental Protection Scientific Research Subject of Jiangsu Province (No.201031)
文摘In order to remove nitric oxides (NO) from flue gas, experimental studies on the photocatalytic oxidation (PCO) of NO are carried out in an efficient laboratory-scale reactor. Nano-sized TiO2 particles loading on quartz sand are prepared and used as the photocatalyst. Effects of several key operating parameters on NO conversion are investigated, including operating temperature, NO inlet concentration, oxygen percentage, relative humidity and residence time. The results illustrate that the NO inlet concentration, the oxygen percentage and the relative humidity play an important role in the oxidation of NO. A lower NO inlet concentration and a higher oxygen percentage result in a higher NO conversion efficiency. When the relative humidity is 8%, the maximum value of NO conversion efficiency is achieved. In addition, the operating temperature and the residence time have a little effect on the conversion efficiency of NO.
基金Projects(51204036,51234009)supported by the National Natural Science Foundation of ChinaProject(20110042120014)supported by the Research Fund for the Doctoral Program of Higher Education,China
文摘Titanium oxide thin films were prepared on self-assembled monolayers-coated silicon substrate using layer-by-layer self-assembly method and chemical bath deposition from an aqueous solution. The effects of temperature on structural properties, thickness and morphologies of titanium oxide thin films were investigated. The results show that the absorption peak of peroxo complexes of titanium at 410 nm decreases gradually with increasing the temperature. The deposited films consisting of titanium oxide nanocrystals are believed to be fully amorphous by XRD. Titanium oxide thin films fabricated at 60 °C for 2 h are continuous, dense and homogeneous with a size in the range of 20-40 nm by SEM. The chemical compositions of deposited thin films were studied by EDS, and the mole ratio of O to Ti is 2.2:1.
文摘Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results showed that the films were thick, uniform, and nontransparent. Such films exhibited sedimentary morphology, with a thickness of about 3 μm, and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm. The films were mainly titanium dioxide. Some coke-like deposits, which may contain or be changed by OH, NH, C-C, C-O, and C=O groups, were doped in the films. The films were mainly amorphous with a small amount of anatase and rutile phase.
文摘Effects of different facing oxides, including including yttria colloidal and powders (Y/Y), yttria stabilized zirconia colloidal and powders (ZY/ZY), zirconia colloidal and powders (Z/Z) and zirconia colloidal and zireonite powders (Z/ZS) on the qualities of investment castings are studied. The outward appearance, microstructures, and microhardness profiles of castings made of commercial pure titanium, Ti--Al--V and Ti--Al--Zr are investigated. Castings made by shells with yttria as face materials have the least contamination and by zirconite shells have the most contamination. Thermodynamic of metal-mold reactions is also taken into consideration.
基金supported by Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20060287019)Opening Research Fund of Jiangsu Provincial Key Laboratory of Tribology of China (Grant No. kjsmcx07001)Jiangsu Provincial Graduate Innovation Foundation of China (Grant No. CX08B-039Z)
文摘Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its application in the bond coat of duplex structure thermal barrier coating(TBC). Three kinds of NiCoCrAlY coatings strengthened by different nano-particles with the same addition (1%, mass fraction) were prepared by the laser cladding technique on Ni-based superalloy substrates, aiming to study the effects of the nano-particles on microstructure and oxidation resistance of NiCoCrAlY coatings (the bond coat of the duplex structure thermal barrier coatings). Scanning electron microscope (SEM), X-ray diffractometer(XRD) and thermogravimetry were employed to investigate their morphologies, phases and cyclic oxidation behaviors in atmosphere at 1 050℃, compared with the coating without nano-particles. With the addition of nano-particles, the growth pattern of the grains at the interface changed from epitaxial growth to non-epitaxial growth or part-epitaxial growth; slender dendrites were broken and cellularized; cracks and pores were restrained; and the oxidation weight-gain and the stripping resistance of the oxide scale were improved as well. Among the three kinds of nano-particles, the SiC nano-particles showed the most improvement on microstructure, while the CeO2 nano-particles were insufficient, but its effects on the oxidation resistance are the same as those of the SiC nano-particles. Based on the discussions of the influence mechanism, it is believed that CeO2 nano-particles would show better improvement than SiC nano-particles if the proper amount is added and the proper preparation technique of micro-nanometer composite powders is adopted, with the synergistic action of nanometer effect and reactive element effect.
基金FundedbytheNationalNaturalScienceFoundationofChina (No :39770 2 2 5 )
文摘Effects of titanium oxide (TiO 2) nanoparticles on Bel-7402 human hepatoma cells and L-02 human hepatocytes at different times were observed.Using cell culture,cell growth curves of Bel-7402 cells and L-02 cells treated with TiO 2 nanoparticles were examined by MTT assay,and the cellular ultrastructure was observed by an analytical transmission electron microscope (ATEM).It is found that OD value of Bel-7402 cell treated with TiO 2 nanoparticles for 48-144h is obviously lower than that of control group (p<0.01).However the growth curve of L-02 cells is almost not affected by TiO 2 nanoparticles.ATEM and energy dispersive X ray (EDX) analyses show that there are obvious vacuoles increased heterolysosome,and particles with high electron density which are confirmed to be TiO 2 nanoparticles in Bel-7402 cytoplasm.More interestingly,it is alse found that TiO 2 nanoparticle obviously inhibits the proliferation of hepatoma cells by altering lysosome activity and destroying cytoplasm structure.The inhibition on proliferation of hepatocytes by TiO 2 nanoparticles is much slighter.The results demonstrate that TiO 2 nanoparticle has different killing effects on cancer cell and normal cell.
基金Funded by the National Natural Science Foundation of China(No.51571114)the Key Research and Development Plan of Shaanxi Province-Industrial Project(No.2018GY-127)
文摘Micro arc oxidation(MAO) coatings doped with graphene oxide(GO) were prepared on pure titanium by adding GO and sodium dodecyl benzene sulfonate(SDBS) into a sodium silicate solution. The as-deposited coatings were comparatively analyzed by scanning electron microscopy(SEM), energydispersive X-ray spectroscopy(EDS) and X-ray diffraction(XRD). The binding forces of the MAO, MAO+GO and MAO+GO+SDBS three coatings were measured by a scratch tester. The mechanical property of the three coatings was analyzed using the nano-indentation technique. The corrosion resistance of the coatings was tested by the electrochemical system in 3.5% NaCl solution. The photocatalytic activity of the prepared samples was evaluated by determining the degradation of methylene blue(MB) solution. The results showed that compared to the MAO coating, the morphologies and phase compositions of MAO+GO and MAO+GO+SDBS composite coatings were significantly different. These two composite coatings all had superior photocatalytic activity. Especially, the MAO+GO composite coating still had enhanced binding force and excellent corrosion resistance. Furthermore, the relationship between the microstructure and the properties of these three MAO coatings was analyzed.
文摘The different investigation has been carried out on the biological activities of titanium dioxide nanoparticle but the effect of this nano product on the antibacterial activity of different antibiotics has not been yet demonstrated. In this study the nano size TiO2 is synthesized using citric acid and alpha dextrose and the enhancement effect of TiO2 nanoparticle on the antibacterial activity of different antibiotics was evaluated against Methicillin-resistant Staphylococcus aureus (MRSA). During the present study, different concentrations of nano-scale TiO2 were tested to find out the best concentration that can have the most effective antibacterial property against the MRSA culture. Disk diffusion method was used to determine the antibacterial activity of these antibiotics in the absence and presence of sub inhibitory concentration of TiO2 nano particle. A clinical isolate of MRSA, isolated from Intensive Care Unit (ICU) was used as test strain. In the presence of sub-inhibitory concentration of TiO2 nanoparticle (20 μg/disc) the antibacterial activities of all antibiotics have been increased against test strain with minimum 2 mm to maximum 10mm. The highest increase in inhibitory zone for MRSA was observed against pencillin G and amikacin (each 10 mm). Conversely, in case of nalidixic acid, TiO2 nanoparticle showed a Synergic effect on the antibacterial activity of this antibiotic against test strain. These results signify that the TiO2 nanoparticle potentate the antimicrobial action of beta lactums, cephalosporins, aminoglycosides, glycopeptides, macrolids and lincosamides, tetracycline a possible utilization of nano compound in combination effect against MRSA.
基金Funded by the National Natural Science Foundation of China(No. 51171011)
文摘The chemical stripping method of titanium alloy oxide films was studied. An environment friendly solution hydrogen peroxide and sodium hydroxide without hydrofluoric acid or fluoride were used to strip the oxide films. The morphologies of the surface and cross-section of the oxide films before and after the films stripping were characterized by using scanning electron microscopy (SEM). The microstructure and chemical compositions of the oxide films before and after the films stripping were investigated by using Raman spectroscopy (Raman) and X-ray photoelectron spectroscopy (XPS). It was shown that the thickness of the oxide film was in the range of 5-6 μm. The oxide films were stripped for 2 to 8 min in the solution. Moreover, the effect of the stripping time on the efficiency of the film stripping was investigated, and the optimum stripping time was between 6-8 min. When the stripping solution completely dissolved the whole film, the α/β microstructure of the titanium alloy Ti-10V-2Fe-3Al was partly revealed. The stripping mechanism was discussed in terms of the dissolution of film delamination. The hydrogen peroxide had a significant effect on the dissolution of the titanium alloy anodic oxide film. The feasibility of the dissolution reaction also was evaluated.
基金National Natu- ral Science Foundation of China (No.11374280 and No.50772110). The authors wish to thank Guo-ping Guo, Jie You and Yang Li from the Key Lab of Quan- tum Information for the support of electron beam lithography. We also thank Ming-ling Li at University of Science and Technology of China for the technical support of ALD.
文摘We present an enhancement of the fluorescence of shallow(<10 nm) nitrogen-vacancy(NV^-)centers by using atomic layer deposition to deposit titanium oxide layers on the diamond surface. In this way, the shallow NV-center charge states were stabilized, leading to the increasing fluorescence intensity of about 2 times. This surface coating technique could produce a protective layer of controllable thickness without any damages to the solid-state quantum system surface, which might be an approach to the further passivation or packaging techniques for the solid-state quantum devices.
文摘Niobium doped titanium oxide (TiO2) colloid was synthesized to fabricate a hydrogen gas sensor layer on oxidized silicon wafer substrate. The layers were obtained using spin coating technique and then heated in air at 500°C for 30 min. The doping of TiO2 led to a significant enhancement of the sensitivity of the layer especially at low operating temperature. The effect of doping was found effective of operating the sensor at relatively low temperature (150°C). The layers show a very smooth nanostructure with average roughness of less than 0.5 nm. The behavior of the sensing characteristics of such layers was discussed related to their chemical compositions, morphology and their crystalline structure. The morphological and structural characteristics of the layers were studied through X-ray diffraction (XRD) and Atomic force microscopy (AFM).
文摘A simple and effective method of removing polluted organics in water is reported here.Titanium dioxide is a catalyst in photo-oxidation of monocrotophos.The mechanism of photocatalytic oxidation and the kinetics of the reaction were studied. This same principle also leads to the construction of instrument of PTR-FIA analysis for monitoring organic phosphorus and phosphate in water.
基金Project(50501007) supported by the National Natural Science Foundation of ChinaProject supported by Program for New Century Excellent Talents(NCET) in University of Ministry of Education of China+1 种基金Project(7001999) supported by the SRG grant from the Research Committee of the CityU of HKProject(4012001007) supported by the Teaching and Research Award Program for Outstanding Young Teachers of Southeast University, China
文摘Titanium oxide film with a graded interface to NiTi matrix was synthesized in situ on NiTi shape memory alloy(SMA) by oxidation in H2O2 solution. In vitro studies including contact angle measurement, hemolysis, MTT cytotoxicity and cell morphology tests were employed to investigate the biocompatibility of the H2O2-oxidized NiTi SMAs with this titanium oxide film. The results reveal that wettability, blood compatibility and fibroblasts compatibility of NiTi SMA are improved by the coating of titanium oxide film through H2O2 oxidation treatment.
基金supported by the National Projects of the National Research Foundation(NRF)funded by Republic of Korea(#2022R1F1A1072739 and#2022R1A2C1004392)Prof.Nashrah is also grateful for financial supports by the YU Infra-Project in conjunction with BK21 FOUR National Program(#222A251009)by the Nano-Fab-NRF grant funded by Republic of Korea(#2009-0082580).
文摘The trade-off between efficiency and stability has limited the application of TiO_(2)as a catalyst due to its poor surface reactivity.Here,we present a modification of a TiO_(2)layer with highly stable Sub-5 nm Fe_(2)O_(3)nanoparticles(NP)by modulating its structure-surface reactivity relationship to attain efficiency-stability balance via a voltage-assisted oxidation approach.In situ simultaneous oxidation of the Ti substrate and Fe precursor using high-energy plasma driven by high voltage resulted in uniform distribution of Fe_(2)O_(3)NP embedded within porous TiO_(2)layer.Comprehensive surface characterizations with density functional theory demonstrated an improved electronic transition in TiO_(2)due to the presence of surface defects from reactive oxygen species and possible charge transfer from Ti to Fe;it also unexpectedly increased the active site in the TiO_(2)layer due to uncoordinated electrons in Sub-5 nm Fe_(2)O_(3)NP/TiO_(2)catalyst,thereby enhancing the adsorption of chemical functional groups on the catalyst.This unique embedded structure exhibited remarkable improvement in reducing 4-nitrophenol to 4-aminophenol,achieving approximately 99%efficiency in 20 min without stability decay after 20 consecutive cycles,outperforming previously reported TiO_(2)-based catalysts.This finding proposes a modified-electrochemical strategy enabling facile construction of TiO_(2)with nanoscale oxides extandable to other metal oxide systems.
文摘Titanium oxide films were prepared by annealing DC magnetron sputtered titanium films in an oxygen ambient. X-ray diffraction (XRD), Auger electron spectroscopy (AES) sputter profiling, MCs^+-mode secondary ion mass spectrometry (MCs^+-SIMS) and atomic force microscopy (AFM) were employed, respectively, for the structural, com- positional and morphological characterization of the obtained films. For temperatures below 875 K, titanium films could not be fully oxidized within one hour. Above that temperature, the completely oxidized films were found to be rutile in structure. Detailed studies on the oxidation process at 925K were carried out for the understanding of the underlying mechanism of titanium dioxide (TiO2) formation by thermal oxidation. It was demonstrated that the formation of crystalline TiO2 could be divided into a short oxidation stage, followed by crystal forming stage. Relevance of this recognition was further discussed.
文摘We study the extended gate ion sensitive structure,and deposit the titanium oxide (TiO_2) thin film on p-type (100) silicon substrate.The device of the hydrogen ion sensing structure is TiO_2/Si-substrate,and a commercial device of the metal oxide semiconductor field effect transistor (MOSFET) is connected to the separative sensing device.The sensitivity and linearity are measured under different work pressures.When the mixed ratio of Ar/O_2 is 80 ml·min^(-1)/20 ml·min^(-1),the work pressure is 4 Pa,the sputtering power is 150 W,and the sputtering time is two hours,the better sensing properties of the sensitivity and linearity are 36.49 mV/pH and 0.99654,respectively.However,some instruments are analyzed the surface of TiO_2 membrane,such as X-ray diffraction (XRD) and Auger Electron Spectrometer (AES).The characteristics of TiO_2 thin film can be demonstrated.