Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spect...Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spectroscopy, high-resolution transmis- sion electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu 0 , Cu^(+) , and Cu^(2+) ), the content of which depends on the TiO_(2) calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO_(2) calcined at 700℃ and modified with 5 wt% copper, the activity of which is 22 μmol/(h·g cat ) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO_(2) was gradually converted into Cu_(2) O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO_(2) did not undergo any trans- formation during the reaction.展开更多
ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (...ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectrophotometer. The composite film shows a lamellar and porous structure which consists of anatase, futile and ZrO2 phases. The optical absorption edge of film is shifted to longer wavelength when ZrO2 is introduced to TiO2. Furthermore, the photocatalytic reaction rate constants of degradation of rhodamine B solution with ZrO2/TiO2 composite film and pure TiO2 film under ultraviolet irradiation are measured as 0.0442 and 0.0186 h 1, respectively.展开更多
Volatile organic compounds (VOCs) are the major group of indoor air pollutants, which significantly impact indoor air quality (IAQ) and influence human health. Photocatalytic oxidation (PCO) is a cost-effective techno...Volatile organic compounds (VOCs) are the major group of indoor air pollutants, which significantly impact indoor air quality (IAQ) and influence human health. Photocatalytic oxidation (PCO) is a cost-effective technology for VOCs removal, compared with adsorption, biofiltration, or thermal catalysis method. Development of active photocatalyst systems is crucial for the PCO reaction. In this paper, the catalyst systems for photocatalysis under UV and visible light were discussed and the kinetics of photocatalytic oxidation was presented in order that some key influencing factors (relative huminity, light intensity, initial contaminant concentration and mass of catalyst) had also been studied. In addition, the future research directions were also presented in this paper.展开更多
CO2 and O2 were employed as reactive gases to fabricate carbon-doped titanium oxide films using DC reactive magnetron sputtering. Microstructure, composition and optical band gap of the films were investigated by X-ra...CO2 and O2 were employed as reactive gases to fabricate carbon-doped titanium oxide films using DC reactive magnetron sputtering. Microstructure, composition and optical band gap of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and UV-visible spectrophotometer, respectively. The results showed that carbon-doped titanium monoxide films (C-TiO) with a carbon concentration of 5.8 at.% were obtained in an AffCO2 mixed atmosphere. However, carbon-doped futile and anatase (C-TiO2) with a carbon concentration of about 1.4 at.% were obtained in an Ar/CO2/O2 mixed atmosphere. The optical band gaps of C-TiO and C-TiO2 were about 2.6 and 2.9 eV, respectively. Both of them were narrower than that of pure TiO2 films. Films with narrowed optical band gap energy are promising in promoting their photo-catalytic activity.展开更多
The washed and dried porous silica gel was soaked in water glass of moderate viscosity, then mixed with nanometer TiO 2, stired until TiO 2 has been uniformly distributed on the porous silica gel. After dried naturall...The washed and dried porous silica gel was soaked in water glass of moderate viscosity, then mixed with nanometer TiO 2, stired until TiO 2 has been uniformly distributed on the porous silica gel. After dried naturally, it was calcined at 300 ℃ for 1 h to give the immobilized nanometer TiO 2 which was mechanically and chemically stable, and can be reused. Under the illumination of high pressure Hg lamp, the X 3B dye could be degraded almost quantitatively(98%) in a solution containing the photocatalyst, Fe 3+ and H 2O 2 with bubbling of air.展开更多
基金supported by Russian Science Foundation (No.#21-73-10235)
文摘Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spectroscopy, high-resolution transmis- sion electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu 0 , Cu^(+) , and Cu^(2+) ), the content of which depends on the TiO_(2) calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO_(2) calcined at 700℃ and modified with 5 wt% copper, the activity of which is 22 μmol/(h·g cat ) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO_(2) was gradually converted into Cu_(2) O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO_(2) did not undergo any trans- formation during the reaction.
基金Project(gf200901002)supported by the Open Research Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology of Nanchang Hangkong University,China
文摘ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectrophotometer. The composite film shows a lamellar and porous structure which consists of anatase, futile and ZrO2 phases. The optical absorption edge of film is shifted to longer wavelength when ZrO2 is introduced to TiO2. Furthermore, the photocatalytic reaction rate constants of degradation of rhodamine B solution with ZrO2/TiO2 composite film and pure TiO2 film under ultraviolet irradiation are measured as 0.0442 and 0.0186 h 1, respectively.
文摘Volatile organic compounds (VOCs) are the major group of indoor air pollutants, which significantly impact indoor air quality (IAQ) and influence human health. Photocatalytic oxidation (PCO) is a cost-effective technology for VOCs removal, compared with adsorption, biofiltration, or thermal catalysis method. Development of active photocatalyst systems is crucial for the PCO reaction. In this paper, the catalyst systems for photocatalysis under UV and visible light were discussed and the kinetics of photocatalytic oxidation was presented in order that some key influencing factors (relative huminity, light intensity, initial contaminant concentration and mass of catalyst) had also been studied. In addition, the future research directions were also presented in this paper.
基金supported by the National Natural Science Foundation of China (Nos.81171462 and 51062002)the Sichuan Youth Science & Technology Foundation for Distinguished Young Scholars (No.2012JQ0001)the Fundamental Research Funds for the Central Universities (Nos.SWJTU11CX078 and SWJTU12ZT08)
文摘CO2 and O2 were employed as reactive gases to fabricate carbon-doped titanium oxide films using DC reactive magnetron sputtering. Microstructure, composition and optical band gap of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and UV-visible spectrophotometer, respectively. The results showed that carbon-doped titanium monoxide films (C-TiO) with a carbon concentration of 5.8 at.% were obtained in an AffCO2 mixed atmosphere. However, carbon-doped futile and anatase (C-TiO2) with a carbon concentration of about 1.4 at.% were obtained in an Ar/CO2/O2 mixed atmosphere. The optical band gaps of C-TiO and C-TiO2 were about 2.6 and 2.9 eV, respectively. Both of them were narrower than that of pure TiO2 films. Films with narrowed optical band gap energy are promising in promoting their photo-catalytic activity.
文摘The washed and dried porous silica gel was soaked in water glass of moderate viscosity, then mixed with nanometer TiO 2, stired until TiO 2 has been uniformly distributed on the porous silica gel. After dried naturally, it was calcined at 300 ℃ for 1 h to give the immobilized nanometer TiO 2 which was mechanically and chemically stable, and can be reused. Under the illumination of high pressure Hg lamp, the X 3B dye could be degraded almost quantitatively(98%) in a solution containing the photocatalyst, Fe 3+ and H 2O 2 with bubbling of air.