Epithelial attachment via the basal lamina on the tooth surface provides an important structural defence mechanism against bacterial invasion in combating periodontal disease. However, when considering dental implants...Epithelial attachment via the basal lamina on the tooth surface provides an important structural defence mechanism against bacterial invasion in combating periodontal disease. However, when considering dental implants, strong epithelial attachment does not exist throughout the titanium-soft tissue interface, making soft tissues more susceptible to peri-implant disease. This study introduced a novel synthetic peptide(A10) to enhance epithelial attachment. A10 was identified from a bacterial peptide display library and synthesized. A10 and protease-activated receptor 4-activating peptide(PAR4-AP, positive control) were immobilized on commercially pure titanium. The peptide-treated titanium showed high epithelial cell migration ability during incubation in platelet-rich plasma. We confirmed the development of dense and expanded BL(stained by Ln5) with pericellular junctions(stained by ZO1) on the peptide-treated titanium surface. In an adhesion assay of epithelial cells on A10-treated titanium, PAR4-AP-treated titanium, bovine root and non-treated titanium, A10-treated titanium and PAR4-AP-treated titanium showed significantly stronger adhesion than non-treated titanium. PAR4-AP-treated titanium showed significantly higher inflammatory cytokine release than non-treated titanium. There was no significant difference in inflammatory cytokine release between A10-treated and non-treated titanium. These results indicated that A10 could induce the adhesion and migration of epithelial cells with low inflammatory cytokine release. This novel peptide has a potentially useful application that could improve clinical outcomes with titanium implants and abutments by reducing or preventing peri-implant disease.展开更多
The aim of this study was to investigate the inhibitory effect of heparin/fibronectin (Hep/Fn) complexes on neointimal hyperplasia following endovascular intervention. Hep/Fn complexes were immobilized onto titanium...The aim of this study was to investigate the inhibitory effect of heparin/fibronectin (Hep/Fn) complexes on neointimal hyperplasia following endovascular intervention. Hep/Fn complexes were immobilized onto titanium (Ti) surfaces, with subsequent X-ray photoelectron spectroscopy (XPS), Toluidine Blue 0 (TBO) and immunohistochemistry methods were used to characterize surface properties. Smooth muscle cell (SMC) cultures were used to evaluate the effect of Hep/Fn complexes on SMC proliferation. Results showed that Hep/Fn complexes successfully immobilized onto Ti surfaces and resulted in an inhibition of SMC proliferation. This study suggests that Hep/Fn surface-immobilized biomaterials develop as a new generation of biomaterials to prevent neointimal hyperplasia, particularly for use in cardiovascular implants.展开更多
The objective of this study was to investigate the effect of a new combined micro/nanoscale implant surface feature on osteoblasts' behaviors including cell morphology, adhesion, proliferation, differentiation, and m...The objective of this study was to investigate the effect of a new combined micro/nanoscale implant surface feature on osteoblasts' behaviors including cell morphology, adhesion, proliferation, differentiation, and mineralization in vitro. A new micro/nano-hybrid topography surface was fabricated on commercial pure titanium(Cp Ti) by a two-step sandblasted acid-etching and subsequent alkali-and heattreatment(SA-AH). The conventional sandblasted/acid-etching(SA) treatment and alkali and heat(AH) treatment were also carried out on the Cp Ti as controls. Surface microstructures of the Ti disc samples were assessed by scanning electron microscopy(SEM). The neonatal rat calvaria-derived osteoblasts were seeded on these discs and the initial cell morphology was evaluated by SEM and immunofluorescence. Initial adhesion of the cells was then assayed by DAPI staining at 1, 2, and 4 h after seeding. The Cell Counting Kit-8(CCact K8) assay, gene expression of osteoblastic markers(ALP, Col 1, OCN, BSP, OSX, Cbfα1) and Alizarin Red S staining assays were monitored respectively for cell proliferations, differentiation and mineralization. The results show significant differences in osteoblast's behaviors on the four kinds of Ti surfaces. Compared with Cp Ti surface, the SA and AH treatment can significantly promote cell adhesion, differentiation and mineralization of osteoblasts. In particular, the combined SA and AH treatments exhibit synergistic effects in comparison with the treatment of SA and AH individually, and are more favorable for stimulating a series of osteogenous responses from cell adhesion to mineralization of osteoblasts. In summary, this study provides some new evidence that the integrated micro/nanostructure on the Cp Ti surface may promote bone osseointegration between the Ti implantbone interfaces in vitro.展开更多
Understanding of metal oxidation is very critical to corrosion control,catalysis synthesis,and advanced materials engineering.Metal oxidation is a very complex phenomenon,with many different processes which are couple...Understanding of metal oxidation is very critical to corrosion control,catalysis synthesis,and advanced materials engineering.Metal oxidation is a very complex phenomenon,with many different processes which are coupled and involved from the onset of reaction.In this work,the initial stage of oxidation on titanium surface was investigated in atomic scale by molecular dynamics(MD)simulations using a reactive force field(ReaxFF).We show that oxygen transport is the dominant process during the initial oxidation.Our simulation also demonstrate that a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Titanium(0001)surface and further prevented oxidation in the deeper layers.The mechanism of initial oxidation observed in this work can be also applicable to other self-limiting oxidation.展开更多
Titanium and its alloys have been widely used as implant materials in bio-medicine.Additionally,surface modification has been utilized to improve the chemical and morphological properties of materials.More specificall...Titanium and its alloys have been widely used as implant materials in bio-medicine.Additionally,surface modification has been utilized to improve the chemical and morphological properties of materials.More specifically,biocoating,especially the calcium-phosphate nano-coating,has been widely used in the research field.In this study,a novel calcium-phosphate nanoflower coating was performed on the titanium surface by a simple approach.This study indicated that the novel calcium-phosphate flower-like coating consisting of calcium-phosphate nanosheets had high surface area,low cytotoxicity as well as promising cell affinity.Hence it could be a potential alternative modification method for titanium.展开更多
n-Hexadecanoic acid (HA) and α-hydroxyl n-hexadecanoic add (HHA) are shown to spontaneously assemble on Si-supported titanium surfaces. Contact angle measurements, reflection absorbance IR, AFM and XPS characterizati...n-Hexadecanoic acid (HA) and α-hydroxyl n-hexadecanoic add (HHA) are shown to spontaneously assemble on Si-supported titanium surfaces. Contact angle measurements, reflection absorbance IR, AFM and XPS characterizations are performed to examine the physical and chemical states of attached monolayers. The results show that the two amphiphiles tend to form disordered monolayers on titanium surfaces. The HHA headgroups are believed to form polydentate coordination with Ti, which is more chemically stable than the bidentate coordination of HA. All the facts of characterization indicate that HHA monolayer has more surface coverage than HA monolayer.展开更多
Anodic oxidation on pure titanium(α-Ti) surface causes the formation ofinterferential films with different colours,mainly golden,pink and blue.The col-our changes with the thickness of the ox-ide film.One of the fact...Anodic oxidation on pure titanium(α-Ti) surface causes the formation ofinterferential films with different colours,mainly golden,pink and blue.The col-our changes with the thickness of the ox-ide film.One of the factors,which influ-ences the growth rate of the film,may bethe grain surface energy.at least at the展开更多
This is second paper summarizing the study on the hydrous titanium oxide absorbent for extracting uranium fromseawater. The investigation is performed by means of X- ray photoelectronic energy spectroscopy for chemica...This is second paper summarizing the study on the hydrous titanium oxide absorbent for extracting uranium fromseawater. The investigation is performed by means of X- ray photoelectronic energy spectroscopy for chemical analysis ( ESC A ) , determination of surface hydroxy radical, Fourier-transfer infrared spectrophotometry (FT-IR ) , electron paramagnetic resonance (EPR), inductively coupled Plasma torch (ICP), etc. The emphasis is laid upon the exploration of HTO surface and a discussion about the adsorption micromechanism.展开更多
The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses...The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses, the surface morphology of titanium alloy in a spatial scale of μm exhibits an obvious smoothening trend. The mechanism of this phenomenon is explained by the mass transfer caused by the surface tension of molten metal. Hydrodynamic simulation with a combination of the finite element method and the level set method reveals that the change in curvature on the molten surface leads to uneven distribution of surface tension. Mass transfer is caused by the relief of surface tension, and meanwhile a flattening trend in the surface morphology evolution is achieved.展开更多
Titanium and its alloys are widely used in the aerospace, marine, and biomedical industry due to their unique bulk properties such as high strength-to-weight ratio and melting temperature, good corrosion resistance, a...Titanium and its alloys are widely used in the aerospace, marine, and biomedical industry due to their unique bulk properties such as high strength-to-weight ratio and melting temperature, good corrosion resistance, and favorable biocom- patibility. However, in some applications, com- ponents made of titanium or titanium alloys exhibit poor wear resistance under stationary or dynamic loading as well as contact corrosion manifested by the relatively negative standard electrode potential (-1.63 V ) . In order to improve the surface properties of titanium and its alloys, several techniques such as PVD ( physical vapor deposition ) /CVD (chemical vapor deposition ) coatings,展开更多
Prevalence of bacterial species involved in biomineralization of manganese on titanium (Ti) surfaces in marine environment was revealed in this research work. This study involves one year sea water exposure of Ti an...Prevalence of bacterial species involved in biomineralization of manganese on titanium (Ti) surfaces in marine environment was revealed in this research work. This study involves one year sea water exposure of Ti and their periodical biofilm characterization was carried out to quantify the manganese oxidizing bacterial (MOB) presence in the biofilm formed on titanium surfaces. The total viable count study of Ti coupons exposed to sea water for one year resulted in 60% of the MOB in overall biofilm population. The biochemical characterization of MOB isolates were performed for the genus level identifcation of the seven bacterial isolates. Further, the seven strains were subjected to 16S rRNA gene sequencing. Evolutionary analysis was performed using MEGA 7 to obtain closely related strains within the groups. The manganese oxidizing ability of the bacterial isolates were determined with Leucoberbelin Blue Assay (LBB) and Atomic Absorption Spectroscopy studies (hAS). The results show that among the isolated marine MOB species, Bacillus sp. and Leptothrix sp. have the maximum Mn oxidizing property. The microtitre plate assay was performed to determine the biofilm forming ability of the isolated marine MOB species. All the results have confirmed the prevalence of Bacillus sp. among the biofilm colonizers on Ti surfaces when exposed in sea water.展开更多
Titanium alloy has been a successful implant material owing to its excellent ratio of strength to weight, toughness, and bio-inert oxide surface. Significant progress has been made in improving the bioactivity of tita...Titanium alloy has been a successful implant material owing to its excellent ratio of strength to weight, toughness, and bio-inert oxide surface. Significant progress has been made in improving the bioactivity of titanium alloy by coating its oxide surface with calcium phosphates. In the present study, in situ coating was reported on Ti6Al4V(TC4) surface with calcium phosphate (Ca-P) bioceramics synthesized and synchronously cladded by laser beam. This coating was grown by first preplacing directly the raw powders, which contain 80% of CaHPO4 · 2H2O, 20% of CaCO3, and dram of rare earth (RE), on the TC4 surfaces, and then exposing the surfaces to the laser beam with a power density of 12. 73-15.27 MW · m^-2 and a scanning velocity of 10.5 m/s. The resultant coating was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis and Different-thermal Scanning (TG-DSC), and Energy Dispersive X-ray Detection (EDX). The results show that these laser ceramics include hydroxyapatite (HA), tricalcium phosphate (TCP), Ca2 P2 O7, and other Ca-P phases, and the interface between the coating and the TC4 substrate has tighter fixation, in which the chemical bonding is approved. These laser hybrid coatings are useful in enhancing the bioactivity of titanium alloy surfaces.展开更多
C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.T...C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.The TiO 2 films are anatase in structure as characterized by X-ray diffraction.The electrochemical measurements show that the equilibrium corrosion potential positively shifts from-0.275 eV for bare stainless steel to-0.267 eV for C,N-codoped TiO 2 coated stainless steel,and the corrosion current density decreases from 1.3×10-5 A/cm2 to 4.1×10-6 A/cm2.The corrosion resistance obtained by electrochemistry noise also reveals that the C,N-codoped TiO 2 films provide good protection for stainless steel against corrosion in stimulated body fluid.The above results indicate that C,N-codoped TiO 2 films deposited by plasma surface alloying and thermal oxidation duplex process are effective in protecting stainless steel from corrosion.展开更多
(TiCp+ TiBw)/Ti-6Al-4V titanium matrix composites(PTMCs) have broad application prospects in the aviation and nuclear field. However, it is a typical difficult-to-cut material due to high hardness of the reinforc...(TiCp+ TiBw)/Ti-6Al-4V titanium matrix composites(PTMCs) have broad application prospects in the aviation and nuclear field. However, it is a typical difficult-to-cut material due to high hardness of the reinforcements, high strength and low thermal conductivity of Ti-6Al-4V alloy matrix. Grinding experiments with vitrified CBN wheels were conducted to analyze comparatively the grinding performance of PTMCs and Ti-6Al-4V alloy. Grinding force and force ratios, specific grinding energy, grinding temperature, surface roughness, ground surface appearance were discussed. The results show that the normal grinding force and the force ratios of PTMCs are much larger than that of Ti-6Al-4V alloy. Low depth of cut and high workpiece speed are generally beneficial to achieve the precision ground surface for PTMCs. The hard reinforcements of PTMCs are mainly removed in the ductile mode during grinding. However, the removal phenomenon of the reinforcements due to brittle fracture still exists, which contributes to the lower specific grinding energy and grinding temperature of PTMCs than Ti-6Al-4V alloy.展开更多
Surface modification using bioactive molecules is frequently performed to improve the biological properties of medical metal biomaterial titanium(Ti)implants.Developmental evidence suggests that mesenchymal stem cell-...Surface modification using bioactive molecules is frequently performed to improve the biological properties of medical metal biomaterial titanium(Ti)implants.Developmental evidence suggests that mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)served as potent bioactive component.As a subset of MSC EV,adipose-derived stem cel-derived extracellular vesicles(ADSC-EVs)could be obtained from abundant adipose tissue.Meanwhile,it possesses multiple re-generative properties and might be used to endow biological activities to medical Ti implant.Here,we present a simple ADSC-EV coating strategy based on physisorption of fibronectin.This ADSC-EV functionalized Ti implants(EV-Ti)revealed enhanced osteoblast compatibility and osteoinduc-tive activity.Cell spreading area of EV-Ti group was 1.62-and 1.48-fold larger than that of Ti group after 6 and 12 h of cell seeding,respectively.Moreover,EV-Ti promoted alkaline phosphatase,col-lagen 1 and osteocalcin gene expression in osteoblast by 1.51-,1.68-and 1.82-fold compared with pristine Ti,respectively.Thus,the MSC-EVs modification method reported here provide a clinically translatable strategy to promote the bioactivity of Ti implants.展开更多
In the recent years,biological nanostructures coatings have been incorporated into orthopedic and dental implants in order to accelerate osseointegration and reducing surgical restrictions.In the present work,chemical...In the recent years,biological nanostructures coatings have been incorporated into orthopedic and dental implants in order to accelerate osseointegration and reducing surgical restrictions.In the present work,chemical etching,anodization and metal doping surface modification methods were integrated in one strategy to fabricate innovative titanium surfaces denominated by titanium nanoporous,anodized titanium nanoporous,silver-anodized titanium nanoporous and gold-anodized titanium nanoporous.The stability properties of nanostructures-coated surfaces were elucidated using electrochemical impedance spectroscopy(EIS) after 7 days of immersion in simulated biological fluids.Morphology and chemical compositions of new surfaces were characterized by scanning electron microscope and energy-dispersive X-ray analysis.The EIS results and data fitting to the electrical equivalent circuit model demonstrated the influence of adsorption of bovine serum albumin on new surfaces as a function of protein concentration.Adsorption process was described by the very well-known model of the Langmuir adsorption isotherm.The thermodynamic parameter DGADS(-50 to 59 kJ mol^(-1)) is calculated,which supports the instantaneous adsorption of protein from biological fluids to new surfaces and refers to their good biocompatibility.Ultimately,this study explores new surface strategy to gain new implants as a means of improving clinical outcomes of patients undergoing orthopedic surgery.展开更多
This study investigates the feasibility of using electrochemical machining(ECM) to produce critical aeroengine components from a new burn-resistant titanium alloy(Ti40), thereby reducing costs and improving effici...This study investigates the feasibility of using electrochemical machining(ECM) to produce critical aeroengine components from a new burn-resistant titanium alloy(Ti40), thereby reducing costs and improving efficiency relative to conventional mechanical machining.Through this, it is found that an aqueous mix of sodium chloride and potassium bromide provides the optimal electrolyte and that the surface quality of the Ti40 workpiece is improved by using a pulsed current of1 k Hz rather than a direct current.Furthermore, the quality of cavities produced by ECM and the overall material removal rate are determined to be dependent on a combination of operating voltage, electrolyte inlet pressure, cathode feeding rate and electrolyte concentration.By optimizing these parameters, a surface roughness of 0.371 lm has been achieved in conjunction with a specific removal rate of more than 3.1 mm3/A?min.展开更多
Laser gas nitriding (LGN) is a common surface modification method to enhance the wear resistance of titanium (Ti) alloys, which are known to have poor tribological properties. In the present study, a titanium nitr...Laser gas nitriding (LGN) is a common surface modification method to enhance the wear resistance of titanium (Ti) alloys, which are known to have poor tribological properties. In the present study, a titanium nitride (TIN) grid network was fabricated on the surface of nickel titanium (NiTi) by LGN. The laser processing parameters were selected to achieve nitriding without surface melting and hence to'maintain a smooth surface finish. The characteristics of the grid-nitrided samples were investigated by scanningelectron microscopy, X-ray diffractometry, optical microscopy, 2-D profilometry, contact angle measurements and nanoindentation. The wear resistance of the nitrided samples was evaluated using reciprocating wear test against ultra-high-molecular-weight polyethylene (UHMWPE) in Hanks' solution. The results indicate that the wear rates of the grid-nitrided samples and the UHMWPE counter-body in the wear pair are both significantly reduced. The decrease in wear rates can be attributed to the combination of a hard TiN grid and a soft NiTi substrate. In Hanks' solution, the higher hydrophilicity of the nitrided samples also contributes to the better performance in wear test against hydrophobic UHMWPE.展开更多
基金supported by an International Team for Implantology(ITI)grant(grant number:1119_2015)
文摘Epithelial attachment via the basal lamina on the tooth surface provides an important structural defence mechanism against bacterial invasion in combating periodontal disease. However, when considering dental implants, strong epithelial attachment does not exist throughout the titanium-soft tissue interface, making soft tissues more susceptible to peri-implant disease. This study introduced a novel synthetic peptide(A10) to enhance epithelial attachment. A10 was identified from a bacterial peptide display library and synthesized. A10 and protease-activated receptor 4-activating peptide(PAR4-AP, positive control) were immobilized on commercially pure titanium. The peptide-treated titanium showed high epithelial cell migration ability during incubation in platelet-rich plasma. We confirmed the development of dense and expanded BL(stained by Ln5) with pericellular junctions(stained by ZO1) on the peptide-treated titanium surface. In an adhesion assay of epithelial cells on A10-treated titanium, PAR4-AP-treated titanium, bovine root and non-treated titanium, A10-treated titanium and PAR4-AP-treated titanium showed significantly stronger adhesion than non-treated titanium. PAR4-AP-treated titanium showed significantly higher inflammatory cytokine release than non-treated titanium. There was no significant difference in inflammatory cytokine release between A10-treated and non-treated titanium. These results indicated that A10 could induce the adhesion and migration of epithelial cells with low inflammatory cytokine release. This novel peptide has a potentially useful application that could improve clinical outcomes with titanium implants and abutments by reducing or preventing peri-implant disease.
基金supported by the financial support of Natural Science Research Program of Jiangsu Education Department(No.13KJB310014)Natural Science Foundation of Jiangsu Province(BK20140429)the Natural Science Foundation of Nantong University(No.14ZY015,No.13R23)
文摘The aim of this study was to investigate the inhibitory effect of heparin/fibronectin (Hep/Fn) complexes on neointimal hyperplasia following endovascular intervention. Hep/Fn complexes were immobilized onto titanium (Ti) surfaces, with subsequent X-ray photoelectron spectroscopy (XPS), Toluidine Blue 0 (TBO) and immunohistochemistry methods were used to characterize surface properties. Smooth muscle cell (SMC) cultures were used to evaluate the effect of Hep/Fn complexes on SMC proliferation. Results showed that Hep/Fn complexes successfully immobilized onto Ti surfaces and resulted in an inhibition of SMC proliferation. This study suggests that Hep/Fn surface-immobilized biomaterials develop as a new generation of biomaterials to prevent neointimal hyperplasia, particularly for use in cardiovascular implants.
基金Funded by the Natural Science Fundation of Zhejiang Province(Nos.Y2080956 and Y4110169)the National Natural Science Foundation of China(Nos.51102211,and 20934003)the Science and Technique Plans of Wenzhou City(Nos.Y20070093 and H20100076)
文摘The objective of this study was to investigate the effect of a new combined micro/nanoscale implant surface feature on osteoblasts' behaviors including cell morphology, adhesion, proliferation, differentiation, and mineralization in vitro. A new micro/nano-hybrid topography surface was fabricated on commercial pure titanium(Cp Ti) by a two-step sandblasted acid-etching and subsequent alkali-and heattreatment(SA-AH). The conventional sandblasted/acid-etching(SA) treatment and alkali and heat(AH) treatment were also carried out on the Cp Ti as controls. Surface microstructures of the Ti disc samples were assessed by scanning electron microscopy(SEM). The neonatal rat calvaria-derived osteoblasts were seeded on these discs and the initial cell morphology was evaluated by SEM and immunofluorescence. Initial adhesion of the cells was then assayed by DAPI staining at 1, 2, and 4 h after seeding. The Cell Counting Kit-8(CCact K8) assay, gene expression of osteoblastic markers(ALP, Col 1, OCN, BSP, OSX, Cbfα1) and Alizarin Red S staining assays were monitored respectively for cell proliferations, differentiation and mineralization. The results show significant differences in osteoblast's behaviors on the four kinds of Ti surfaces. Compared with Cp Ti surface, the SA and AH treatment can significantly promote cell adhesion, differentiation and mineralization of osteoblasts. In particular, the combined SA and AH treatments exhibit synergistic effects in comparison with the treatment of SA and AH individually, and are more favorable for stimulating a series of osteogenous responses from cell adhesion to mineralization of osteoblasts. In summary, this study provides some new evidence that the integrated micro/nanostructure on the Cp Ti surface may promote bone osseointegration between the Ti implantbone interfaces in vitro.
基金Support of this work from the National Natural Science Foundation of China(Grant No.51361009)Work at Ames Laboratory was supported by the US Department of Energy,Basic Energy Sciences,Division of Materials Science and Engineering under Contract No.DE-AC02-07CH11358,including a grant of computer time at the National Energy Research Scientific Computing Centre(NERSC)in Berkeley,CA.
文摘Understanding of metal oxidation is very critical to corrosion control,catalysis synthesis,and advanced materials engineering.Metal oxidation is a very complex phenomenon,with many different processes which are coupled and involved from the onset of reaction.In this work,the initial stage of oxidation on titanium surface was investigated in atomic scale by molecular dynamics(MD)simulations using a reactive force field(ReaxFF).We show that oxygen transport is the dominant process during the initial oxidation.Our simulation also demonstrate that a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Titanium(0001)surface and further prevented oxidation in the deeper layers.The mechanism of initial oxidation observed in this work can be also applicable to other self-limiting oxidation.
基金supported by the National Natural Science Foundation of China(No.81471803)Sichuan Province Youth Science and Technology Innovation Team(No.2014TD0001)
文摘Titanium and its alloys have been widely used as implant materials in bio-medicine.Additionally,surface modification has been utilized to improve the chemical and morphological properties of materials.More specifically,biocoating,especially the calcium-phosphate nano-coating,has been widely used in the research field.In this study,a novel calcium-phosphate nanoflower coating was performed on the titanium surface by a simple approach.This study indicated that the novel calcium-phosphate flower-like coating consisting of calcium-phosphate nanosheets had high surface area,low cytotoxicity as well as promising cell affinity.Hence it could be a potential alternative modification method for titanium.
文摘n-Hexadecanoic acid (HA) and α-hydroxyl n-hexadecanoic add (HHA) are shown to spontaneously assemble on Si-supported titanium surfaces. Contact angle measurements, reflection absorbance IR, AFM and XPS characterizations are performed to examine the physical and chemical states of attached monolayers. The results show that the two amphiphiles tend to form disordered monolayers on titanium surfaces. The HHA headgroups are believed to form polydentate coordination with Ti, which is more chemically stable than the bidentate coordination of HA. All the facts of characterization indicate that HHA monolayer has more surface coverage than HA monolayer.
文摘Anodic oxidation on pure titanium(α-Ti) surface causes the formation ofinterferential films with different colours,mainly golden,pink and blue.The col-our changes with the thickness of the ox-ide film.One of the factors,which influ-ences the growth rate of the film,may bethe grain surface energy.at least at the
文摘This is second paper summarizing the study on the hydrous titanium oxide absorbent for extracting uranium fromseawater. The investigation is performed by means of X- ray photoelectronic energy spectroscopy for chemical analysis ( ESC A ) , determination of surface hydroxy radical, Fourier-transfer infrared spectrophotometry (FT-IR ) , electron paramagnetic resonance (EPR), inductively coupled Plasma torch (ICP), etc. The emphasis is laid upon the exploration of HTO surface and a discussion about the adsorption micromechanism.
基金Supported by the National Natural Science Foundation of China under Grant No 1175012the China Postdoctoral Science Foundation under Grant No 2016M600897the National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No 2013ZX04001-071
文摘The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses, the surface morphology of titanium alloy in a spatial scale of μm exhibits an obvious smoothening trend. The mechanism of this phenomenon is explained by the mass transfer caused by the surface tension of molten metal. Hydrodynamic simulation with a combination of the finite element method and the level set method reveals that the change in curvature on the molten surface leads to uneven distribution of surface tension. Mass transfer is caused by the relief of surface tension, and meanwhile a flattening trend in the surface morphology evolution is achieved.
文摘Titanium and its alloys are widely used in the aerospace, marine, and biomedical industry due to their unique bulk properties such as high strength-to-weight ratio and melting temperature, good corrosion resistance, and favorable biocom- patibility. However, in some applications, com- ponents made of titanium or titanium alloys exhibit poor wear resistance under stationary or dynamic loading as well as contact corrosion manifested by the relatively negative standard electrode potential (-1.63 V ) . In order to improve the surface properties of titanium and its alloys, several techniques such as PVD ( physical vapor deposition ) /CVD (chemical vapor deposition ) coatings,
文摘Prevalence of bacterial species involved in biomineralization of manganese on titanium (Ti) surfaces in marine environment was revealed in this research work. This study involves one year sea water exposure of Ti and their periodical biofilm characterization was carried out to quantify the manganese oxidizing bacterial (MOB) presence in the biofilm formed on titanium surfaces. The total viable count study of Ti coupons exposed to sea water for one year resulted in 60% of the MOB in overall biofilm population. The biochemical characterization of MOB isolates were performed for the genus level identifcation of the seven bacterial isolates. Further, the seven strains were subjected to 16S rRNA gene sequencing. Evolutionary analysis was performed using MEGA 7 to obtain closely related strains within the groups. The manganese oxidizing ability of the bacterial isolates were determined with Leucoberbelin Blue Assay (LBB) and Atomic Absorption Spectroscopy studies (hAS). The results show that among the isolated marine MOB species, Bacillus sp. and Leptothrix sp. have the maximum Mn oxidizing property. The microtitre plate assay was performed to determine the biofilm forming ability of the isolated marine MOB species. All the results have confirmed the prevalence of Bacillus sp. among the biofilm colonizers on Ti surfaces when exposed in sea water.
基金Item Sponsored by National Natural Science Foundation of China(59571045)
文摘Titanium alloy has been a successful implant material owing to its excellent ratio of strength to weight, toughness, and bio-inert oxide surface. Significant progress has been made in improving the bioactivity of titanium alloy by coating its oxide surface with calcium phosphates. In the present study, in situ coating was reported on Ti6Al4V(TC4) surface with calcium phosphate (Ca-P) bioceramics synthesized and synchronously cladded by laser beam. This coating was grown by first preplacing directly the raw powders, which contain 80% of CaHPO4 · 2H2O, 20% of CaCO3, and dram of rare earth (RE), on the TC4 surfaces, and then exposing the surfaces to the laser beam with a power density of 12. 73-15.27 MW · m^-2 and a scanning velocity of 10.5 m/s. The resultant coating was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis and Different-thermal Scanning (TG-DSC), and Energy Dispersive X-ray Detection (EDX). The results show that these laser ceramics include hydroxyapatite (HA), tricalcium phosphate (TCP), Ca2 P2 O7, and other Ca-P phases, and the interface between the coating and the TC4 substrate has tighter fixation, in which the chemical bonding is approved. These laser hybrid coatings are useful in enhancing the bioactivity of titanium alloy surfaces.
基金Funded by the National Natural Science Foundation of China (No.50771070)Project Innovation of the Graduate Students of Shanxi Province(No.20093038)
文摘C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.The TiO 2 films are anatase in structure as characterized by X-ray diffraction.The electrochemical measurements show that the equilibrium corrosion potential positively shifts from-0.275 eV for bare stainless steel to-0.267 eV for C,N-codoped TiO 2 coated stainless steel,and the corrosion current density decreases from 1.3×10-5 A/cm2 to 4.1×10-6 A/cm2.The corrosion resistance obtained by electrochemistry noise also reveals that the C,N-codoped TiO 2 films provide good protection for stainless steel against corrosion in stimulated body fluid.The above results indicate that C,N-codoped TiO 2 films deposited by plasma surface alloying and thermal oxidation duplex process are effective in protecting stainless steel from corrosion.
基金co-supported by the National Natural Science Foundation of China (Nos. 51235004, 51375235)the Fundamental Research Funds for the Central Universities (No. NE2014103) of ChinaPriority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) of China
文摘(TiCp+ TiBw)/Ti-6Al-4V titanium matrix composites(PTMCs) have broad application prospects in the aviation and nuclear field. However, it is a typical difficult-to-cut material due to high hardness of the reinforcements, high strength and low thermal conductivity of Ti-6Al-4V alloy matrix. Grinding experiments with vitrified CBN wheels were conducted to analyze comparatively the grinding performance of PTMCs and Ti-6Al-4V alloy. Grinding force and force ratios, specific grinding energy, grinding temperature, surface roughness, ground surface appearance were discussed. The results show that the normal grinding force and the force ratios of PTMCs are much larger than that of Ti-6Al-4V alloy. Low depth of cut and high workpiece speed are generally beneficial to achieve the precision ground surface for PTMCs. The hard reinforcements of PTMCs are mainly removed in the ductile mode during grinding. However, the removal phenomenon of the reinforcements due to brittle fracture still exists, which contributes to the lower specific grinding energy and grinding temperature of PTMCs than Ti-6Al-4V alloy.
基金This work was supported by the National Key R&D Program of China(2019YFA0110500)the National Natural Science Foundation of China(No.81873941,81701922 and 81701912).
文摘Surface modification using bioactive molecules is frequently performed to improve the biological properties of medical metal biomaterial titanium(Ti)implants.Developmental evidence suggests that mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)served as potent bioactive component.As a subset of MSC EV,adipose-derived stem cel-derived extracellular vesicles(ADSC-EVs)could be obtained from abundant adipose tissue.Meanwhile,it possesses multiple re-generative properties and might be used to endow biological activities to medical Ti implant.Here,we present a simple ADSC-EV coating strategy based on physisorption of fibronectin.This ADSC-EV functionalized Ti implants(EV-Ti)revealed enhanced osteoblast compatibility and osteoinduc-tive activity.Cell spreading area of EV-Ti group was 1.62-and 1.48-fold larger than that of Ti group after 6 and 12 h of cell seeding,respectively.Moreover,EV-Ti promoted alkaline phosphatase,col-lagen 1 and osteocalcin gene expression in osteoblast by 1.51-,1.68-and 1.82-fold compared with pristine Ti,respectively.Thus,the MSC-EVs modification method reported here provide a clinically translatable strategy to promote the bioactivity of Ti implants.
文摘In the recent years,biological nanostructures coatings have been incorporated into orthopedic and dental implants in order to accelerate osseointegration and reducing surgical restrictions.In the present work,chemical etching,anodization and metal doping surface modification methods were integrated in one strategy to fabricate innovative titanium surfaces denominated by titanium nanoporous,anodized titanium nanoporous,silver-anodized titanium nanoporous and gold-anodized titanium nanoporous.The stability properties of nanostructures-coated surfaces were elucidated using electrochemical impedance spectroscopy(EIS) after 7 days of immersion in simulated biological fluids.Morphology and chemical compositions of new surfaces were characterized by scanning electron microscope and energy-dispersive X-ray analysis.The EIS results and data fitting to the electrical equivalent circuit model demonstrated the influence of adsorption of bovine serum albumin on new surfaces as a function of protein concentration.Adsorption process was described by the very well-known model of the Langmuir adsorption isotherm.The thermodynamic parameter DGADS(-50 to 59 kJ mol^(-1)) is calculated,which supports the instantaneous adsorption of protein from biological fluids to new surfaces and refers to their good biocompatibility.Ultimately,this study explores new surface strategy to gain new implants as a means of improving clinical outcomes of patients undergoing orthopedic surgery.
基金sponsored by the National Natural Science Foundation of China the Program for New Century Excellent Talents in University (NCET-12-0627) of Chinathe Fundamental Research Funds for the Central Universities of China
文摘This study investigates the feasibility of using electrochemical machining(ECM) to produce critical aeroengine components from a new burn-resistant titanium alloy(Ti40), thereby reducing costs and improving efficiency relative to conventional mechanical machining.Through this, it is found that an aqueous mix of sodium chloride and potassium bromide provides the optimal electrolyte and that the surface quality of the Ti40 workpiece is improved by using a pulsed current of1 k Hz rather than a direct current.Furthermore, the quality of cavities produced by ECM and the overall material removal rate are determined to be dependent on a combination of operating voltage, electrolyte inlet pressure, cathode feeding rate and electrolyte concentration.By optimizing these parameters, a surface roughness of 0.371 lm has been achieved in conjunction with a specific removal rate of more than 3.1 mm3/A?min.
基金supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.PolyU524210E)
文摘Laser gas nitriding (LGN) is a common surface modification method to enhance the wear resistance of titanium (Ti) alloys, which are known to have poor tribological properties. In the present study, a titanium nitride (TIN) grid network was fabricated on the surface of nickel titanium (NiTi) by LGN. The laser processing parameters were selected to achieve nitriding without surface melting and hence to'maintain a smooth surface finish. The characteristics of the grid-nitrided samples were investigated by scanningelectron microscopy, X-ray diffractometry, optical microscopy, 2-D profilometry, contact angle measurements and nanoindentation. The wear resistance of the nitrided samples was evaluated using reciprocating wear test against ultra-high-molecular-weight polyethylene (UHMWPE) in Hanks' solution. The results indicate that the wear rates of the grid-nitrided samples and the UHMWPE counter-body in the wear pair are both significantly reduced. The decrease in wear rates can be attributed to the combination of a hard TiN grid and a soft NiTi substrate. In Hanks' solution, the higher hydrophilicity of the nitrided samples also contributes to the better performance in wear test against hydrophobic UHMWPE.