To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparat...To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparation of calcium carbonate” was proposed.In this study,the influences of process conditions on the leaching rates of calcium,magnesium,aluminum,and iron and the phases of the leaching residue were investigated for the leaching process.The experimental results show that the HCl solution could selectively leach the elements from the titanium-containing blast furnace slag.The better leaching conditions are the HCl solution concentration of 4 mol/L,the leaching time of 30 min,the ratio of liquid volume to solid gas of 10 mL/g,and the stirring paddle speed of 300 r/min.Under the conditions,the leaching rates of calcium,magnesium,aluminum,and iron can reach 85.87%,73.41%,81.35%,and 59.08%,and the leaching rate of titanium is 10.71%.The iron and the aluminum are removed from the leachate to obtain iron-aluminum water purification agents,and the magnesium is removed from the leachate to obtain magnesium hydroxide.The leaching residue phase is dominated by perovskite,followed by magnesium silicate and tricalcium aluminate,and the titaniumrich material could be obtained from the leaching residue by desiliconization.展开更多
The feasibility of reducing Cr(VI)from the aqueous solution by sulfuric acid-modified titanium-bearing blast furnace slag(SATBBFS)as a photocatalyst was investigated.The photocatalysts were examined by X-ray diffracti...The feasibility of reducing Cr(VI)from the aqueous solution by sulfuric acid-modified titanium-bearing blast furnace slag(SATBBFS)as a photocatalyst was investigated.The photocatalysts were examined by X-ray diffraction(XRD),UV-vis diffuse reflectance spectra,thermogravimetric analysis(TG)and Fourier transform infrared spectroscopy(FTIR).The photocatalytic activities of the different catalysts were evaluated by the photocatalytic reduction of Cr(VI)under UV-vis light irradiation.The results show that the photocatalytic activities of SATBBFS catalysts are strongly dependent on CaTiO3-to-TiO2 mass ratio,adsorption capacity and surface acidity,and SATBBFS calcined at 400°C shows a higher photocatalytic activity compared with other catalysts.展开更多
In this study,a route for simultaneous mineralization of CO2 and production of titanium dioxide and ammonium alum,and microporous silicon dioxide from titanium-bearing blast furnace slag(TBBF slag)was proposed,which i...In this study,a route for simultaneous mineralization of CO2 and production of titanium dioxide and ammonium alum,and microporous silicon dioxide from titanium-bearing blast furnace slag(TBBF slag)was proposed,which is comprised of(NH4)2 S04 roasting,acid leaching,ammonium alum crystallization,silicic acid flocculation and Ti hydrolysis.The effects of relevant process parameters were systematically investigated.The re sults showed that under the optimal roasting and leaching conditions about 85%of titanium and 84.6%of aluminum could be extracted while only 30%of silicon entered the leachate.84%of Al^3+was crystallized from the leachate in the form of ammonium aluminum sulfate dodecahydrate with a purity up to 99.5 wt%.About 85%of the soluble silicic acid was flocculated with the aid of secondary alcohol polyoxyethylene ether 9(AEO-9)to yield a microporous SiO2 material(97.4 wt%)from the crystallized mother liquor.The Al-and Si-depleted solution was then hydrolyzed to generate a titanium dioxide(99.1 wt%)with uniform particle size distribution.It was figured out that approximately 146 kg TiO2 could be produced from 1000 kg of TBBF slag.Therefore,the improved process is a promising method for industrial application.展开更多
Titanium-bearing blast furnace slag(BFS)has valuable compositions and potential environmental hazardousness.Thus,developing efficient and green approaches to utilize BFS is highly desired for resource economization an...Titanium-bearing blast furnace slag(BFS)has valuable compositions and potential environmental hazardousness.Thus,developing efficient and green approaches to utilize BFS is highly desired for resource economization and environmental protection.In the past decades,many attempts have been adopted to reuse BFS efficiently,and significant advances in understanding the fundamental features and the development of efficient approaches have been achieved.This review provides a comprehensive overview of the latest progress on the efficient utilization of BFS and discusses the mechanism and characteristics of various approaches,along with their application prospects.In particular,the extraction and enrichment of titanium-bearing phases from BFS are highlighted because of the high availability of titanium resources.This systemic and comprehensive review may benefit the design of new and green utilization routes with high efficiency and low cost.展开更多
An energy-efficient route was adopted to treat titanium-bearing blast furnace slag(TBBFS)in this study.Titanium,aluminum,and magnesium were simultaneously extracted and silicon was separated by low temperature sulfuri...An energy-efficient route was adopted to treat titanium-bearing blast furnace slag(TBBFS)in this study.Titanium,aluminum,and magnesium were simultaneously extracted and silicon was separated by low temperature sulfuric acid curing and low concentration sulfuric acid leaching.The process parameters of sulfuric acid curing TBBFS were systematically studied.Under the optimal conditions,the recovery of titanium,aluminum,and magnesium reached 85.96%,81.17%,and 93.82%,respectively.The rapid leaching model was used to limit the dissolution and polymerization of silicon,and the dissolution of silicon was only 3.18%.The mechanism of sulfuric acid curing-leaching was investigated.During the curing process,the reaction occurred rapidly and released heat massively.Under the attack of hydrogen ions,the structure of TBBFS was destroyed,silicate was depolymerized to form filterable silica,and titanium,magnesium,aluminum,and calcium ions were replaced to form sulfates and enriched on the surface of silica particles.Titanium,aluminum,and magnesium were recovered in the leaching solution,and calcium sulfate and silica were enriched in the residue after leaching.This method could effectively avoid the formation of silica sol during the leaching process and accelerate the solid-liquid separation.展开更多
Perovskite-type V-doped titanium-bearing blast furnace slag (VTBBFS) photocatalyst was prepared by high-temperature solid phase method.The influence of calcination temperature on the photocatalytic and antibacterial p...Perovskite-type V-doped titanium-bearing blast furnace slag (VTBBFS) photocatalyst was prepared by high-temperature solid phase method.The influence of calcination temperature on the photocatalytic and antibacterial properties of VTBBFS was studied in details.Its composition and microstructure were evaluated by X-ray diffractometer,ultraviolet-visible absorption spectrometer,Fourier transform infrared spectrometer and scanning electron microscope.The antibacterial properties of VTBBFS to Candida albicans were investigated by flask oscillation method.The results showed that the optical absorption and antibacterial properties of VTBBFS were the best with 10%(ω) doping of vanadium,prepared at 800℃ for 2 h,and its sterilization rate was close to 100% to Candida albicans (ATCC10231).The minimum inhibitory and minimum bactericidal concentrations were 25 and 50 mg/mL.When the concentration was 0.2 μg/mL,the catalyst had the least toxic toxicity.展开更多
With titanium-bearing blast furnace slag, ammonium sulfate, citric acid and potassium carbonate as raw materials to produce foliar fertilizer and Ca-S-Si compound fertilizer by means of heating process for the first t...With titanium-bearing blast furnace slag, ammonium sulfate, citric acid and potassium carbonate as raw materials to produce foliar fertilizer and Ca-S-Si compound fertilizer by means of heating process for the first time, which improved the solubility of the slag and converted the nutritional elements into such ones which are prone to be absorbed by plants. The effects of process conditions on dissolution rate of titanium were mainly analyzed through the orthogonal experiment. The results showed that the optimum synthesis process conditions of foliar fertilizer from the slag were 360 ℃ for 35 min, the mass ratio of ammonium sulfate and titanium-bearing blast furnace slag was 8:1. Under these conditions more than 80% of iron, titanium, magnesium and part of silicon in titanium-bearing blast furnace slag converted into water-soluble substances and existing in foliar fertilizer. Foliar fertilizer contained nitrogen, sulfur, potassium, iron, titanium, magnesium and silicon, and pH value of foliar fertilizer was 6. Ca-S-Si compound fertilizer mainly contained calcium silicate and calcium sulfate, which existed in the form of citric acid-soluble substance and slightly soluble substance, respectively.展开更多
The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace(BF) slag was studied using confocal scanning laser microscopy(CSLM). Results showed that perovskite was the primary ...The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace(BF) slag was studied using confocal scanning laser microscopy(CSLM). Results showed that perovskite was the primary phase formed during the cooling of slag. On the slag surface, the growth of perovskite proceeded via the successive production of quasi-particles along straight lines, which further extended in certain directions. The morphology and structure of perovskite was found to vary as a function of cooling rate. At cooling rates of 10 and 30 K/min, the dendritic arms of perovskite crossed obliquely, while they were orthogonal at a cooling rate of 20 K/min and hexagonal at cooling rates of 40 and 50 K/min. These three crystal morphologies thus obtained at different cooling rates respectively corresponded to the orthorhombic, cubic and hexagonal crystal structures of perovskite. The observed change in the structure of perovskite could probably be attributed to the deficiency of O^2-, when Ti2O3 was involved in the formation of perovskite.展开更多
Large quantities of CO2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO2 emission reduction and comprehensive utilization of the...Large quantities of CO2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO2 emission reduction and comprehensive utilization of the solid waste. This paper describes a novel route for indirect mineral carbonation of titanium-bearing blast furnace (TBBF) slag, in which the TBBF slag is roasted with recyclable (NH4)2SO4 (AS) at low temperatures and converted into the sulphates of various valuable metals, including calcium, magnesium, aluminium and titanium. High value added Ti-and Al-rich products can be obtained through stepwise precipitation of the leaching solution from the roasted slag. The NH3 produced during the roasting is used to capture CO2 from flue gases. The NH4HCO3 and (NH4)2CO3 thus obtained are used to carbonate the CaSO4-containing leaching residue and MgSO4-rich leaching solution, respectively. In this study, the process parameters and efficiency for the roasting, carbonation and Ti and Al recovery were investigated in detail. The results showed that the sulfation ratios of calcium, magnesium, titanium and aluminium reached 92.6%, 87% and 84.4%, respectively, after roasting at an AS-to-TBBF slag mass ratio of 2:1 and 350℃ for 2 h. The leaching solution was subjected to hydrolysis at 102℃ for 4 h with a Ti hydrolysis ratio of 95.7%and the purity of TiO2 in the calcined hydrolysate reached 98 wt%. 99.7% of aluminium in the Ti-depleted leaching solution was precipitated by using NH3. The carbonation products of Ca and Mg were CaCO3 and (NH4)2Mg(CO3)2·4H2O, respectively. The latter can be decomposed into MgCO3 at 100-200℃ with simultaneous recovery of the NH3 for reuse. In this process, approximately 82.1% of Ca and 84.2% of Mg in the TBBF slag were transformed into stable carbonates and the total CO2 sequestration capacity per ton of TBBF slag reached up to 239.7 kg. The TiO2 obtained can be used directly as an end product, while the Al-rich precipitate and the two carbonation products can act, respectively, as raw materials for electrolytic aluminium, cement and light magnesium carbonate production for the replacement of natural resources.展开更多
The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperatur...The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperature and concentration have significant influence on leaching of carbothermic reduced titanium-bearing blast furnace slag by acid. The experimental data of leaching indicate that the shrinking core model with chemical reaction controlled process is most applicable for the acid leaching. The apparent activation energy can be estimated to be from 23 to 32 k J/mol. Furthermore, the main products are TiC and SiO_2 after leaching.展开更多
The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con...The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.展开更多
The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneve...The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles,discusses the feasible methods for the improvement of BF cooling intensity,and reviews the pre-paration process,performance,and damage characteristics of three key equipment pieces:coolers,tuyeres,and hearth refractories.Fur-thermoere,to attain better control of these critical components under high-temperature working conditions,we propose the application of optimized technologies,such as BF operation and maintenance technology,self-repair technology,and full-lifecycle management techno-logy.Finally,we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions.展开更多
The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,...The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed.The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed.A novel method for the delay analysis of furnace heat indicators was established.The extracted delay variables were found to play an important role in modeling.The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model.The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt%was 93.3%.On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels.These sugges-tions were highly accepted by BF operators.Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system.It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9%to 84.9%.This improvement achieved considerable economic benefits.展开更多
Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demand...Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demands on coke quality in a blast furnace.In a hydrogen-rich blast furnace,the presence of H_(2)O promotes the solution loss reaction.This result improves the reactivity of coke,which is 20%-30%higher in a pure H_(2)O atmosphere than in a pure CO_(2)atmosphere.The activation energy range is 110-300 kJ/mol between coke and CO_(2)and 80-170 kJ/mol between coke and H_(2)O.CO_(2)and H_(2)O are shown to have different effects on coke degradation mechanisms.This review provides a comprehensive overview of the effect of H_(2)O on the structure and properties of coke.By exploring the interactions between H_(2)O and coke,several unresolved issues in the field requiring further research were identified.This review aims to provide valuable insights into coke behavior in hydrogen-rich environments and promote the further development of hydrogen-rich blast furnace ironmaking processes.展开更多
Blast furnace(BF)burden surface contains the most abundant,intuitive and credible smelting information and acquiring high-definition and high-brightness optical images of which is essential to realize precise material...Blast furnace(BF)burden surface contains the most abundant,intuitive and credible smelting information and acquiring high-definition and high-brightness optical images of which is essential to realize precise material charging control,optimize gas flow distribution and improve ironmaking efficiency.It has been challengeable to obtain high-quality optical burden surface images under high-temperature,high-dust,and extremelydim(less than 0.001 Lux)environment.Based on a novel endoscopic sensing detection idea,a reverse telephoto structure starlight imaging system with large field of view and large aperture is designed.Combined with a water-air dual cooling intelligent self-maintenance protection device and the imaging system,a starlight high-temperature industrial endoscope is developed to obtain clear optical burden surface images stably under the harsh environment.Based on an endoscope imaging area model,a material flow trajectory model and a gas-dust coupling distribution model,an optimal installation position and posture configuration method for the endoscope is proposed,which maximizes the effective imaging area and ensures large-area,safe and stable imaging of the device in a confined space.Industrial experiments and applications indicate that the proposed method obtains clear and reliable large-area optical burden surface images and reveals new BF conditions,providing key data support for green iron smelting.展开更多
Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save ...Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save energy and water in the slag flushing process of blast furnaces,an ideal comprehensive cascade utilization system scheme for annual recovery of waste heat is proposed.Based on the measured waste heat data of a steel plant,design calculations are carried out to further analyze the economic feasibility of the new scheme and provide reference for its promotion and application.展开更多
The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the en...The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the environmental pressure caused by slag stocking.The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method.Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed.The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.展开更多
Sulfate-modified titanium dioxide-bearing blast furnace slag(STBBFS) photocatalysts were prepared by the high energy ball milling method with(NH4)2SO4 and titanium dioxide-bearing blast furnace slag(TBBFS) as ra...Sulfate-modified titanium dioxide-bearing blast furnace slag(STBBFS) photocatalysts were prepared by the high energy ball milling method with(NH4)2SO4 and titanium dioxide-bearing blast furnace slag(TBBFS) as raw materials.X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),scanning electron microscopy(SEM),thermogravimetric analysis(TGA),UV-visible diffuse reflectance absorption spectra(UV-Vis),adsorption experiment and photocatalytic degradation measurement were conducted to characterize the structure,surface status,light absorption capacity,adsorption capacity and photocatalytic activity of the obtained photocatalysts.The adsorption equilibrium was described by the Langmuir isotherm model with a maximum adsorption capacity of 8.25 mg/g of Cr(VI) ions onto the STBBFS photocatalysts.As a result,sulfation of TBBFS improved the photocatalytic activities of STBBFSx photocatalysts.At a low calcination temperature,the photocatalytic activity of STBBFS300 photocatalyst was markedly higher compared with TBBFSx prepared at high calcination temperature,indicating that the photocatalytic activity of STBBFSx photocatalyst was determined by the balanced result between adsorption capacity and perovskite content.展开更多
(Ca, Mg)-α′-Sialon-AlN-BN powders were synthesized by the carbothermal reduction and nitridation (CRN) method using boron-rich slag, one of the intermediate products from pyrometallurgy separation of pageit, as the ...(Ca, Mg)-α′-Sialon-AlN-BN powders were synthesized by the carbothermal reduction and nitridation (CRN) method using boron-rich slag, one of the intermediate products from pyrometallurgy separation of pageit, as the staring material. The influences of synthesis temperature and holding time on the phase composition and microstructure during the microwave CRN were studied by XRD, SEM and EDS. The comparison between two heating techniques, conventional and microwave heating, on the synthesized powder was presented as well. The experimental results revealed that the phase compositions and microstructures of the synthesized products were greatly affected by the synthesis temperature and holding time. With an increase in the synthesis temperature or holding time, the relative amount of α′-Sialon increased and α′-Sialon became the main crystalline phase at 1400 °C for 6 h. The synthesized products also contained AlN, BN and a small amount of β-SiC. Elongated α′-Sialon grains, short rod AlN grains, aggregate nanoscale BN grains were observed in the synthesized powders. The reaction temperature of microwave heating method was reduced by 80 °C, the reaction time was shortened by 2 h, and more elongated α′-Sialon grains with large aspect ratio were observed.展开更多
The phenomena of tuyere upward-warp have been found at No.6 blast furnace in Kunming Steel Company China after its blow-in, which has made a great impact on the practical production of the furnace. Thus, a number of e...The phenomena of tuyere upward-warp have been found at No.6 blast furnace in Kunming Steel Company China after its blow-in, which has made a great impact on the practical production of the furnace. Thus, a number of efforts have been made to elucidate the mechanism of this phenomenon. The results of investigation and tests revealed that the enrichment and expansion of zinc in the tuyere bricks is the main factor leading to the tuyere upward-warp. The eroding behavior of zinc is that the inner structure of the tuyere bricks turns from dense to loose with entering, enriching and expanding of zinc, which forms spot-like→stripe-like→ditch-like→vein-like→tumorlike eroding passage. Additionally, it is found that the sequence of deleterious ele- ments entering the tuyere refractory is K, Na, Zn and Pb, respectively. Finally, the phenomena and process of zinc crystallization and growth in the refractory have been clearly observed and recorded during this investigation.展开更多
基金Funded by the National Natural Science Foundation of China Youth Fund(No.52204419)the Liaoning Provincial Natural Science Foundation(No.2022-BS-076)the Guangxi Science and Technology Major Project(No.2021AA12013)。
文摘To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparation of calcium carbonate” was proposed.In this study,the influences of process conditions on the leaching rates of calcium,magnesium,aluminum,and iron and the phases of the leaching residue were investigated for the leaching process.The experimental results show that the HCl solution could selectively leach the elements from the titanium-containing blast furnace slag.The better leaching conditions are the HCl solution concentration of 4 mol/L,the leaching time of 30 min,the ratio of liquid volume to solid gas of 10 mL/g,and the stirring paddle speed of 300 r/min.Under the conditions,the leaching rates of calcium,magnesium,aluminum,and iron can reach 85.87%,73.41%,81.35%,and 59.08%,and the leaching rate of titanium is 10.71%.The iron and the aluminum are removed from the leachate to obtain iron-aluminum water purification agents,and the magnesium is removed from the leachate to obtain magnesium hydroxide.The leaching residue phase is dominated by perovskite,followed by magnesium silicate and tricalcium aluminate,and the titaniumrich material could be obtained from the leaching residue by desiliconization.
基金Project(N090423003)supported by the Basic Scientific Research Costs of Central Colleges of ChinaProject(2007CB613504)supported by the National Basic Research Program of ChinaProject(307009)supported by the Foundation for Key Program of Ministry of Education,China
文摘The feasibility of reducing Cr(VI)from the aqueous solution by sulfuric acid-modified titanium-bearing blast furnace slag(SATBBFS)as a photocatalyst was investigated.The photocatalysts were examined by X-ray diffraction(XRD),UV-vis diffuse reflectance spectra,thermogravimetric analysis(TG)and Fourier transform infrared spectroscopy(FTIR).The photocatalytic activities of the different catalysts were evaluated by the photocatalytic reduction of Cr(VI)under UV-vis light irradiation.The results show that the photocatalytic activities of SATBBFS catalysts are strongly dependent on CaTiO3-to-TiO2 mass ratio,adsorption capacity and surface acidity,and SATBBFS calcined at 400°C shows a higher photocatalytic activity compared with other catalysts.
基金financial support of the National Key Projects for Fundamental Research and Development of China(2016YFB0600904)Sichuan University Postdoctoral Research and Development Fund(2017SCU12017)+1 种基金Project of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization(18H0083)Sichuan Science and Technology Department Project(2019YJ0111)。
文摘In this study,a route for simultaneous mineralization of CO2 and production of titanium dioxide and ammonium alum,and microporous silicon dioxide from titanium-bearing blast furnace slag(TBBF slag)was proposed,which is comprised of(NH4)2 S04 roasting,acid leaching,ammonium alum crystallization,silicic acid flocculation and Ti hydrolysis.The effects of relevant process parameters were systematically investigated.The re sults showed that under the optimal roasting and leaching conditions about 85%of titanium and 84.6%of aluminum could be extracted while only 30%of silicon entered the leachate.84%of Al^3+was crystallized from the leachate in the form of ammonium aluminum sulfate dodecahydrate with a purity up to 99.5 wt%.About 85%of the soluble silicic acid was flocculated with the aid of secondary alcohol polyoxyethylene ether 9(AEO-9)to yield a microporous SiO2 material(97.4 wt%)from the crystallized mother liquor.The Al-and Si-depleted solution was then hydrolyzed to generate a titanium dioxide(99.1 wt%)with uniform particle size distribution.It was figured out that approximately 146 kg TiO2 could be produced from 1000 kg of TBBF slag.Therefore,the improved process is a promising method for industrial application.
基金This work was financially supported by the National Nat-ural Science Foundation of China(No.51974011)the Key R&D Program of Ningxia Hui Autonomous Region,China(No.2019BFG02032).
文摘Titanium-bearing blast furnace slag(BFS)has valuable compositions and potential environmental hazardousness.Thus,developing efficient and green approaches to utilize BFS is highly desired for resource economization and environmental protection.In the past decades,many attempts have been adopted to reuse BFS efficiently,and significant advances in understanding the fundamental features and the development of efficient approaches have been achieved.This review provides a comprehensive overview of the latest progress on the efficient utilization of BFS and discusses the mechanism and characteristics of various approaches,along with their application prospects.In particular,the extraction and enrichment of titanium-bearing phases from BFS are highlighted because of the high availability of titanium resources.This systemic and comprehensive review may benefit the design of new and green utilization routes with high efficiency and low cost.
基金financially supported by the National Key Projects for Fundamental Research and Development of China(No.2016YFB0600904)the Sichuan University-Panzhihua city joint strategic cooperation special fund project,China(No.2018CDPZH-7)。
文摘An energy-efficient route was adopted to treat titanium-bearing blast furnace slag(TBBFS)in this study.Titanium,aluminum,and magnesium were simultaneously extracted and silicon was separated by low temperature sulfuric acid curing and low concentration sulfuric acid leaching.The process parameters of sulfuric acid curing TBBFS were systematically studied.Under the optimal conditions,the recovery of titanium,aluminum,and magnesium reached 85.96%,81.17%,and 93.82%,respectively.The rapid leaching model was used to limit the dissolution and polymerization of silicon,and the dissolution of silicon was only 3.18%.The mechanism of sulfuric acid curing-leaching was investigated.During the curing process,the reaction occurred rapidly and released heat massively.Under the attack of hydrogen ions,the structure of TBBFS was destroyed,silicate was depolymerized to form filterable silica,and titanium,magnesium,aluminum,and calcium ions were replaced to form sulfates and enriched on the surface of silica particles.Titanium,aluminum,and magnesium were recovered in the leaching solution,and calcium sulfate and silica were enriched in the residue after leaching.This method could effectively avoid the formation of silica sol during the leaching process and accelerate the solid-liquid separation.
基金Supported by the National Natural Science Foundation of China (No. 50874029)Important Project of Education Ministry (No.307009)National Basic Research Program (973) (No.2007CB613504)
文摘Perovskite-type V-doped titanium-bearing blast furnace slag (VTBBFS) photocatalyst was prepared by high-temperature solid phase method.The influence of calcination temperature on the photocatalytic and antibacterial properties of VTBBFS was studied in details.Its composition and microstructure were evaluated by X-ray diffractometer,ultraviolet-visible absorption spectrometer,Fourier transform infrared spectrometer and scanning electron microscope.The antibacterial properties of VTBBFS to Candida albicans were investigated by flask oscillation method.The results showed that the optical absorption and antibacterial properties of VTBBFS were the best with 10%(ω) doping of vanadium,prepared at 800℃ for 2 h,and its sterilization rate was close to 100% to Candida albicans (ATCC10231).The minimum inhibitory and minimum bactericidal concentrations were 25 and 50 mg/mL.When the concentration was 0.2 μg/mL,the catalyst had the least toxic toxicity.
基金This study was supported by the National Natural Science Foundation of China (No. 50874029) and the National Basic Research Program of China (No.2007CB613504). Thanks are due to X.L. Nan and B.Y. Ma for their assistance in language editing.
文摘With titanium-bearing blast furnace slag, ammonium sulfate, citric acid and potassium carbonate as raw materials to produce foliar fertilizer and Ca-S-Si compound fertilizer by means of heating process for the first time, which improved the solubility of the slag and converted the nutritional elements into such ones which are prone to be absorbed by plants. The effects of process conditions on dissolution rate of titanium were mainly analyzed through the orthogonal experiment. The results showed that the optimum synthesis process conditions of foliar fertilizer from the slag were 360 ℃ for 35 min, the mass ratio of ammonium sulfate and titanium-bearing blast furnace slag was 8:1. Under these conditions more than 80% of iron, titanium, magnesium and part of silicon in titanium-bearing blast furnace slag converted into water-soluble substances and existing in foliar fertilizer. Foliar fertilizer contained nitrogen, sulfur, potassium, iron, titanium, magnesium and silicon, and pH value of foliar fertilizer was 6. Ca-S-Si compound fertilizer mainly contained calcium silicate and calcium sulfate, which existed in the form of citric acid-soluble substance and slightly soluble substance, respectively.
基金financially supported by the National Natural Science Foundation of China(No.51090383)the Fundamental Research Funds for the Central Universities of China(No.CDJZR12130049)
文摘The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace(BF) slag was studied using confocal scanning laser microscopy(CSLM). Results showed that perovskite was the primary phase formed during the cooling of slag. On the slag surface, the growth of perovskite proceeded via the successive production of quasi-particles along straight lines, which further extended in certain directions. The morphology and structure of perovskite was found to vary as a function of cooling rate. At cooling rates of 10 and 30 K/min, the dendritic arms of perovskite crossed obliquely, while they were orthogonal at a cooling rate of 20 K/min and hexagonal at cooling rates of 40 and 50 K/min. These three crystal morphologies thus obtained at different cooling rates respectively corresponded to the orthorhombic, cubic and hexagonal crystal structures of perovskite. The observed change in the structure of perovskite could probably be attributed to the deficiency of O^2-, when Ti2O3 was involved in the formation of perovskite.
基金Supported by the National Key Projects for Fundamental Research and Development of China(2016YFB0600904)
文摘Large quantities of CO2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO2 emission reduction and comprehensive utilization of the solid waste. This paper describes a novel route for indirect mineral carbonation of titanium-bearing blast furnace (TBBF) slag, in which the TBBF slag is roasted with recyclable (NH4)2SO4 (AS) at low temperatures and converted into the sulphates of various valuable metals, including calcium, magnesium, aluminium and titanium. High value added Ti-and Al-rich products can be obtained through stepwise precipitation of the leaching solution from the roasted slag. The NH3 produced during the roasting is used to capture CO2 from flue gases. The NH4HCO3 and (NH4)2CO3 thus obtained are used to carbonate the CaSO4-containing leaching residue and MgSO4-rich leaching solution, respectively. In this study, the process parameters and efficiency for the roasting, carbonation and Ti and Al recovery were investigated in detail. The results showed that the sulfation ratios of calcium, magnesium, titanium and aluminium reached 92.6%, 87% and 84.4%, respectively, after roasting at an AS-to-TBBF slag mass ratio of 2:1 and 350℃ for 2 h. The leaching solution was subjected to hydrolysis at 102℃ for 4 h with a Ti hydrolysis ratio of 95.7%and the purity of TiO2 in the calcined hydrolysate reached 98 wt%. 99.7% of aluminium in the Ti-depleted leaching solution was precipitated by using NH3. The carbonation products of Ca and Mg were CaCO3 and (NH4)2Mg(CO3)2·4H2O, respectively. The latter can be decomposed into MgCO3 at 100-200℃ with simultaneous recovery of the NH3 for reuse. In this process, approximately 82.1% of Ca and 84.2% of Mg in the TBBF slag were transformed into stable carbonates and the total CO2 sequestration capacity per ton of TBBF slag reached up to 239.7 kg. The TiO2 obtained can be used directly as an end product, while the Al-rich precipitate and the two carbonation products can act, respectively, as raw materials for electrolytic aluminium, cement and light magnesium carbonate production for the replacement of natural resources.
基金Specialized Research Fund for the Doctoral Program of Higher Education (20130006120007)the National Natural Science Foundation of China (51174022, 51304018 and 51474141)
文摘The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperature and concentration have significant influence on leaching of carbothermic reduced titanium-bearing blast furnace slag by acid. The experimental data of leaching indicate that the shrinking core model with chemical reaction controlled process is most applicable for the acid leaching. The apparent activation energy can be estimated to be from 23 to 32 k J/mol. Furthermore, the main products are TiC and SiO_2 after leaching.
基金the National Key R&D Program of China(No.2022YFE0208100)the National Natural Science Foundation of China(No.5274316)+1 种基金the Key Research and Development Plan of Anhui Province,China(No.202210700037)the Major Science and Technology Project of Xinjiang Uygur Autonomous Region,China(No.2022A01003).
文摘The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.
基金supported by the National Natural Science Foundation of China(No.52174296)the Key Laboratory of Metallurgical Industry Safety&Risk Prevention and Control,Ministry of Emergency Management,China.
文摘The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles,discusses the feasible methods for the improvement of BF cooling intensity,and reviews the pre-paration process,performance,and damage characteristics of three key equipment pieces:coolers,tuyeres,and hearth refractories.Fur-thermoere,to attain better control of these critical components under high-temperature working conditions,we propose the application of optimized technologies,such as BF operation and maintenance technology,self-repair technology,and full-lifecycle management techno-logy.Finally,we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions.
基金financially supported by the General Program of the National Natural Science Foundation of China (No. 52274326)the Fundamental Research Funds for the Central Universities (No. N2425031)+3 种基金Seventh Batch of Ten Thousand Talents Plan (No. ZX20220553)China Baowu Low Carbon Metallurgy Innovation Foundation (No. BWLCF202109)The key technology research and development and application of digital transformation throughout the iron and steel production process (No. 2023JH2/101800058)Liaoning Province Science and Technology Plan Joint Program (Key Research and Development Program Project)
文摘The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed.The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed.A novel method for the delay analysis of furnace heat indicators was established.The extracted delay variables were found to play an important role in modeling.The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model.The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt%was 93.3%.On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels.These sugges-tions were highly accepted by BF operators.Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system.It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9%to 84.9%.This improvement achieved considerable economic benefits.
基金financially supported by the Young Elite Scientist Sponsorship Program by CAST(No.YESS20210090)the National Natural Science Foundation of China(No.51974019),Beijing Natural Science Foundation(J210017)China Baowu Low Carbon Metallurgy Innovation Foundation(Nos.BWLCF202119 and BWLCF 202117)。
文摘Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demands on coke quality in a blast furnace.In a hydrogen-rich blast furnace,the presence of H_(2)O promotes the solution loss reaction.This result improves the reactivity of coke,which is 20%-30%higher in a pure H_(2)O atmosphere than in a pure CO_(2)atmosphere.The activation energy range is 110-300 kJ/mol between coke and CO_(2)and 80-170 kJ/mol between coke and H_(2)O.CO_(2)and H_(2)O are shown to have different effects on coke degradation mechanisms.This review provides a comprehensive overview of the effect of H_(2)O on the structure and properties of coke.By exploring the interactions between H_(2)O and coke,several unresolved issues in the field requiring further research were identified.This review aims to provide valuable insights into coke behavior in hydrogen-rich environments and promote the further development of hydrogen-rich blast furnace ironmaking processes.
基金the National Natural Science Foundation of China(62273359)the General Project of Hunan Natural Science Foundation of China(2022JJ30748)the National Major Scientific Research Equipment of China(61927803)。
文摘Blast furnace(BF)burden surface contains the most abundant,intuitive and credible smelting information and acquiring high-definition and high-brightness optical images of which is essential to realize precise material charging control,optimize gas flow distribution and improve ironmaking efficiency.It has been challengeable to obtain high-quality optical burden surface images under high-temperature,high-dust,and extremelydim(less than 0.001 Lux)environment.Based on a novel endoscopic sensing detection idea,a reverse telephoto structure starlight imaging system with large field of view and large aperture is designed.Combined with a water-air dual cooling intelligent self-maintenance protection device and the imaging system,a starlight high-temperature industrial endoscope is developed to obtain clear optical burden surface images stably under the harsh environment.Based on an endoscope imaging area model,a material flow trajectory model and a gas-dust coupling distribution model,an optimal installation position and posture configuration method for the endoscope is proposed,which maximizes the effective imaging area and ensures large-area,safe and stable imaging of the device in a confined space.Industrial experiments and applications indicate that the proposed method obtains clear and reliable large-area optical burden surface images and reveals new BF conditions,providing key data support for green iron smelting.
文摘Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save energy and water in the slag flushing process of blast furnaces,an ideal comprehensive cascade utilization system scheme for annual recovery of waste heat is proposed.Based on the measured waste heat data of a steel plant,design calculations are carried out to further analyze the economic feasibility of the new scheme and provide reference for its promotion and application.
基金financially supported by the National Key R&D Program of China (No.2018YFC1900500)the National Natural Science Foundation of China (No.51961020)+1 种基金the Key Technology Research and Industrialization Application Demonstration Project of the Renewable Multi-energy Complementary (No.2018IB020)the Academician Workstation of Kefa Cen (No.2018IC085)。
文摘The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the environmental pressure caused by slag stocking.The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method.Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed.The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.
基金Project (2007CB613504) supported by the National Basic Research Program of ChinaProject (307009) supported by the Foundation for Key Program of Ministry of Education,China+1 种基金Project (N110423003) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (E2012501012) supported by Natural Science Foundation-Steel and Iron Foundation of Hebei Province,China
文摘Sulfate-modified titanium dioxide-bearing blast furnace slag(STBBFS) photocatalysts were prepared by the high energy ball milling method with(NH4)2SO4 and titanium dioxide-bearing blast furnace slag(TBBFS) as raw materials.X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),scanning electron microscopy(SEM),thermogravimetric analysis(TGA),UV-visible diffuse reflectance absorption spectra(UV-Vis),adsorption experiment and photocatalytic degradation measurement were conducted to characterize the structure,surface status,light absorption capacity,adsorption capacity and photocatalytic activity of the obtained photocatalysts.The adsorption equilibrium was described by the Langmuir isotherm model with a maximum adsorption capacity of 8.25 mg/g of Cr(VI) ions onto the STBBFS photocatalysts.As a result,sulfation of TBBFS improved the photocatalytic activities of STBBFSx photocatalysts.At a low calcination temperature,the photocatalytic activity of STBBFS300 photocatalyst was markedly higher compared with TBBFSx prepared at high calcination temperature,indicating that the photocatalytic activity of STBBFSx photocatalyst was determined by the balanced result between adsorption capacity and perovskite content.
基金Project (2006AA06Z368) supported by High-tech Research and Development Programs of ChinaProject (N100402007) supported by the Fundamental Research Funds for the Central Universities in China
文摘(Ca, Mg)-α′-Sialon-AlN-BN powders were synthesized by the carbothermal reduction and nitridation (CRN) method using boron-rich slag, one of the intermediate products from pyrometallurgy separation of pageit, as the staring material. The influences of synthesis temperature and holding time on the phase composition and microstructure during the microwave CRN were studied by XRD, SEM and EDS. The comparison between two heating techniques, conventional and microwave heating, on the synthesized powder was presented as well. The experimental results revealed that the phase compositions and microstructures of the synthesized products were greatly affected by the synthesis temperature and holding time. With an increase in the synthesis temperature or holding time, the relative amount of α′-Sialon increased and α′-Sialon became the main crystalline phase at 1400 °C for 6 h. The synthesized products also contained AlN, BN and a small amount of β-SiC. Elongated α′-Sialon grains, short rod AlN grains, aggregate nanoscale BN grains were observed in the synthesized powders. The reaction temperature of microwave heating method was reduced by 80 °C, the reaction time was shortened by 2 h, and more elongated α′-Sialon grains with large aspect ratio were observed.
基金supported by Program for New Century Excellent Talents in University(NCET-2008-0099)
文摘The phenomena of tuyere upward-warp have been found at No.6 blast furnace in Kunming Steel Company China after its blow-in, which has made a great impact on the practical production of the furnace. Thus, a number of efforts have been made to elucidate the mechanism of this phenomenon. The results of investigation and tests revealed that the enrichment and expansion of zinc in the tuyere bricks is the main factor leading to the tuyere upward-warp. The eroding behavior of zinc is that the inner structure of the tuyere bricks turns from dense to loose with entering, enriching and expanding of zinc, which forms spot-like→stripe-like→ditch-like→vein-like→tumorlike eroding passage. Additionally, it is found that the sequence of deleterious ele- ments entering the tuyere refractory is K, Na, Zn and Pb, respectively. Finally, the phenomena and process of zinc crystallization and growth in the refractory have been clearly observed and recorded during this investigation.