This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into f...This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.展开更多
Sutong Bridge,as a world-record cable-stayed bridge with its main span exceeding 1 000 m constructed in Yangtze River estuary region in China,is located at a site with complicated hydrologic conditions and poor geotec...Sutong Bridge,as a world-record cable-stayed bridge with its main span exceeding 1 000 m constructed in Yangtze River estuary region in China,is located at a site with complicated hydrologic conditions and poor geotechnical conditions and therefore,scour protection will be a decisive factor for ensuring smooth and successful construction of this bridge.This paper,starting from structural description of deep-water group pile foundation,analyzes impact to the bridge safety introduced by scour and its protection and further presents different solutions of scour protection for foundation structures of this bridge.展开更多
Pile foundations are challenging to build due to subsurface obstacles, contractor ignorance, and difficulties with site planning. Given the unpredictable environment of the construction site, productivity losses durin...Pile foundations are challenging to build due to subsurface obstacles, contractor ignorance, and difficulties with site planning. Given the unpredictable environment of the construction site, productivity losses during pile work are to be thought possible. Prior to finishing a site pre-investigation, a foundation’s area is usually sampled for statistical reasons. There are studies on pile construction outside of Bangladesh that are supported by relevant empirical data in the literature. Since Bangladesh, which is regarded as a third-world country, is ignored in this regard, the literature currently available about pile building and the associated productivity loss is unable to provide adequate information or appropriate empirical data. Due to this pile-building sector in Bangladesh has been experiencing a decline in production for quite some time now. Before attempting to increase productivity in pile construction, it is essential to investigate the potential losses and the variables that might have an influence. This study aims to accomplish the following objectives: 1) identify the primary factors that have an impact on pile construction;2) develop an SVR model that accurately predicts productivity loss;and 3) figure out the projected loss by basing it on the historical scenario that is the most comparable to the current one. A Support Vector Regression (SVR) model was developed after a study of the relevant literature. This model enabled the collection of 110 pile building projects from five significant locations in Bangladesh. The model was constructed using a list of eight inputs in addition to a list of five macro elements (labor, management, environment, material, and equipment) (soil condition, pile type, pile material, project size, project location, pile depth, pile quantity, and equipment quantity). Using 10-way cross validation, the SVR achieves an accuracy of 87.2% in its predictions. On the basis of what has occurred in the past, we are able to estimate that there will be a loss of around 18.55 percent of the total output. A new perspective for engineers studying the delay factors with productivity loss is provided by the outcome of important tasks as it relates to loss in productivity and overall factors faced. In the building construction industry, effective management should place more emphasis on the correlation between productivity loss and the factors that cause it. Therefore, to represent the effect on productivity loss, real factors can be summed up as a decline in productivity loss. The findings of the study would urge specialists to concentrate on waste as a means of increasing overall production.展开更多
In the present study, an analytical solution is presented to solve the problem of combined seepage, under a sheet piling cofferdam, applied to dewatering systems. Existence of the sheet pile creates a confined seepage...In the present study, an analytical solution is presented to solve the problem of combined seepage, under a sheet piling cofferdam, applied to dewatering systems. Existence of the sheet pile creates a confined seepage followed by an unconfined seepage in the same field, which presents a combined seepage problem. Two equations were developed to analyze the combined seepage underneath a sheet piling wall. Using such equations, both the maximum height of the free surface just behind the sheet piling cofferdam (H<sub>o</sub>) and the quantity of seepage discharge to be pumped out from the construction site (q) can be determined. The main parameters affecting the combined seepage characteristics underneath a sheet piling wall are: The depth of permeable foundation layer (T), the horizontal distance behind the sheet pile (X), the depth of excavation in the construction site (D), the embedded depth of sheet pile (S), the retained water head (H<sub>1</sub>), the accumulated seepage water depth (H<sub>2</sub>), and the side slope factor of excavation line (M). Study showed that, the above parameters have a great effect on the combined seepage, but with different extents.展开更多
This article introduces three outstanding innovations, i.e. utilization of the steel casing for the piles to establish a construction platform for Sutong Bridge's large and deep-pile groups; 5000 ton steel cofferd...This article introduces three outstanding innovations, i.e. utilization of the steel casing for the piles to establish a construction platform for Sutong Bridge's large and deep-pile groups; 5000 ton steel cofferdam lowered as a whole and used as a protective structure against impact from ship collision; Permanent scour protection. This article also presents economical and reasonable design method for large bridge foundation and explains the significance of innovation and technical integration to large and complicated project construction based on the above theory.展开更多
This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient...This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient construction practices. The paper explores two fundamental approaches to sheet pile design: limit equilibrium methods and numerical techniques, with a particular focus on finite element analysis. Utilizing the robust PLAXIS 2016 calculation code based on the finite element method and employing a simplified elastoplastic model (Mohr-Coulomb), this study meticulously models the interaction between sheet pile walls and surrounding soil. The research offers valuable insights into settlement and deformation patterns that adjacent buildings may experience during various construction phases. The central objective of this paper is to present the study’s findings and recommend potential mitigation measures for settlement effects on nearby structures. By unraveling the intricate interplay between sheet pile wall construction and neighboring buildings, the paper equips engineers and practitioners to make informed decisions that ensure the safety and integrity of the built environment. In the context of the Cotonou East Corniche development, the study addresses the limitations of existing software, such as RIDO, in predicting settlements and deformations affecting nearby buildings due to the substantial load supported by sheet pile walls. This information gap necessitates a comprehensive study to assess potential impacts on adjacent structures and propose suitable mitigation measures. The research underscores the intricate dynamics between sheet pile wall construction and its influence on the local environment. It emphasizes the critical importance of proactive engineering and vigilant monitoring in managing and mitigating potential hazards to nearby buildings. To mitigate these risks, the paper recommends measures such as deep foundations, ground improvement techniques, and retrofitting. The findings presented in this study contribute significantly to the field of civil engineering and offer invaluable insights into the multifaceted dynamics of construction-induced settlement. The study underscores the importance of continuous evaluation and coordination between construction teams and building owners to effectively manage the impacts of sheet pile wall construction on adjacent structures.展开更多
Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influe...Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference.展开更多
The cement mixing (CM) pile is a common method of improving soft offshore ground. The strength growth of CM piles under complex conditions is affected by many factors, especially the cement and moisture contents, and ...The cement mixing (CM) pile is a common method of improving soft offshore ground. The strength growth of CM piles under complex conditions is affected by many factors, especially the cement and moisture contents, and shows significant uncertainty. To investigate the stochasticity of the early strength of CM piles and its impact on the displacement and stability of a seawall, a series of laboratory tests and numerical analyses were carried out in this study. Vane shear tests were conducted on the cement-solidified soil to determine the relationships between the undrained shear strength s_(u) of the cement soil curing in the seawater and the cement content a_(c), as well as the in situ soil moisture content w. It can be inferred that the 24 h undrained shear strength follows a normal distribution. A numerical model considering the random CM pile strength was established to investigate the deformation of the seawall. Due to the uncertainty of CM pile strength, the displacement of the seawall demonstrates a certain discreteness. The decrease of the mean undrained shear strength of CM piles causes a corresponding increase in the average displacement of the seawall. When the mean strength of CM piles is lower than a certain threshold, there is a risk of instability. Furthermore, the heterogeneity of the strength within an individual CM pile also has an impact on seawall displacement. Attention should be paid to the uncertainty of CM pile strength to control displacement and stability.展开更多
This paper,from three aspects including construction conditions,foundation design and construction,introduces some considerations in the designing of main-pylon foundations and some practical measures to deal with cer...This paper,from three aspects including construction conditions,foundation design and construction,introduces some considerations in the designing of main-pylon foundations and some practical measures to deal with certain unfavorable construction conditions,such as deep water,tidal effect,soft stratum and heavy traffic,during the construction of main-pylon foundations.展开更多
The development of urbanization has led to an increase in the number and scale of construction projects and the types of building construction engineering are getting advance and diverse due to the rapid development o...The development of urbanization has led to an increase in the number and scale of construction projects and the types of building construction engineering are getting advance and diverse due to the rapid development of technology.One of them is the static pressure prestressed pipe pile which is the most commonly used technology in modern building construction work.It is mainly used for pile foundation in construction work,and it has the advantages in less pollution,low noise,and high efficiency compared to the traditional pile foundation.Study on the characteristics of static pressure prestressed pipe pile must be carried out and strengthened the research to increase the effectiveness and quality of static pressure prestressed pipe pile on construction works.This paper is mainly to analyzed the characteristic and construction technology of static pressure prestressed pipe piles on building construction work.展开更多
Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the ra...Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the rapid increase of high-rise buildings,skyscrapers and underground buildings,the construction technology of deep foundation pit support has gradually become an indispensable construction technology.Therefore,the selection of foundation pit support construction technology is crucial in ensuring that whether the foundation is firm and stable,and whether the subsequent construction activities can be carried out smoothly.In view of this,the article discusses the application of deep foundation pit support construction technology in municipal civil engineering,aiming to provide reference for subsequent projects.展开更多
In order to improve the quality of bored piles in bridge construction and ensure the overall quality of the bridge,we analyzed a series of problems in the construction process of bored piles,then propose corresponding...In order to improve the quality of bored piles in bridge construction and ensure the overall quality of the bridge,we analyzed a series of problems in the construction process of bored piles,then propose corresponding quality control measures,in hopes of improving quality control of bored piles in bridge construction in our country.展开更多
基金National Natural Science Foundation of China under Grand No.51808190the Central Government Guides Local Science and Technology Development Fund Projects under Grand No.XZ202301YD0019C+2 种基金the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University)Ministry of Education under Grand No.2022P04the Central University Basic Research Fund of China under Grand No.B220202017。
文摘This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.
基金National Science and Technology Support Program(No.2006BAG04B05)
文摘Sutong Bridge,as a world-record cable-stayed bridge with its main span exceeding 1 000 m constructed in Yangtze River estuary region in China,is located at a site with complicated hydrologic conditions and poor geotechnical conditions and therefore,scour protection will be a decisive factor for ensuring smooth and successful construction of this bridge.This paper,starting from structural description of deep-water group pile foundation,analyzes impact to the bridge safety introduced by scour and its protection and further presents different solutions of scour protection for foundation structures of this bridge.
文摘Pile foundations are challenging to build due to subsurface obstacles, contractor ignorance, and difficulties with site planning. Given the unpredictable environment of the construction site, productivity losses during pile work are to be thought possible. Prior to finishing a site pre-investigation, a foundation’s area is usually sampled for statistical reasons. There are studies on pile construction outside of Bangladesh that are supported by relevant empirical data in the literature. Since Bangladesh, which is regarded as a third-world country, is ignored in this regard, the literature currently available about pile building and the associated productivity loss is unable to provide adequate information or appropriate empirical data. Due to this pile-building sector in Bangladesh has been experiencing a decline in production for quite some time now. Before attempting to increase productivity in pile construction, it is essential to investigate the potential losses and the variables that might have an influence. This study aims to accomplish the following objectives: 1) identify the primary factors that have an impact on pile construction;2) develop an SVR model that accurately predicts productivity loss;and 3) figure out the projected loss by basing it on the historical scenario that is the most comparable to the current one. A Support Vector Regression (SVR) model was developed after a study of the relevant literature. This model enabled the collection of 110 pile building projects from five significant locations in Bangladesh. The model was constructed using a list of eight inputs in addition to a list of five macro elements (labor, management, environment, material, and equipment) (soil condition, pile type, pile material, project size, project location, pile depth, pile quantity, and equipment quantity). Using 10-way cross validation, the SVR achieves an accuracy of 87.2% in its predictions. On the basis of what has occurred in the past, we are able to estimate that there will be a loss of around 18.55 percent of the total output. A new perspective for engineers studying the delay factors with productivity loss is provided by the outcome of important tasks as it relates to loss in productivity and overall factors faced. In the building construction industry, effective management should place more emphasis on the correlation between productivity loss and the factors that cause it. Therefore, to represent the effect on productivity loss, real factors can be summed up as a decline in productivity loss. The findings of the study would urge specialists to concentrate on waste as a means of increasing overall production.
文摘In the present study, an analytical solution is presented to solve the problem of combined seepage, under a sheet piling cofferdam, applied to dewatering systems. Existence of the sheet pile creates a confined seepage followed by an unconfined seepage in the same field, which presents a combined seepage problem. Two equations were developed to analyze the combined seepage underneath a sheet piling wall. Using such equations, both the maximum height of the free surface just behind the sheet piling cofferdam (H<sub>o</sub>) and the quantity of seepage discharge to be pumped out from the construction site (q) can be determined. The main parameters affecting the combined seepage characteristics underneath a sheet piling wall are: The depth of permeable foundation layer (T), the horizontal distance behind the sheet pile (X), the depth of excavation in the construction site (D), the embedded depth of sheet pile (S), the retained water head (H<sub>1</sub>), the accumulated seepage water depth (H<sub>2</sub>), and the side slope factor of excavation line (M). Study showed that, the above parameters have a great effect on the combined seepage, but with different extents.
文摘This article introduces three outstanding innovations, i.e. utilization of the steel casing for the piles to establish a construction platform for Sutong Bridge's large and deep-pile groups; 5000 ton steel cofferdam lowered as a whole and used as a protective structure against impact from ship collision; Permanent scour protection. This article also presents economical and reasonable design method for large bridge foundation and explains the significance of innovation and technical integration to large and complicated project construction based on the above theory.
文摘This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient construction practices. The paper explores two fundamental approaches to sheet pile design: limit equilibrium methods and numerical techniques, with a particular focus on finite element analysis. Utilizing the robust PLAXIS 2016 calculation code based on the finite element method and employing a simplified elastoplastic model (Mohr-Coulomb), this study meticulously models the interaction between sheet pile walls and surrounding soil. The research offers valuable insights into settlement and deformation patterns that adjacent buildings may experience during various construction phases. The central objective of this paper is to present the study’s findings and recommend potential mitigation measures for settlement effects on nearby structures. By unraveling the intricate interplay between sheet pile wall construction and neighboring buildings, the paper equips engineers and practitioners to make informed decisions that ensure the safety and integrity of the built environment. In the context of the Cotonou East Corniche development, the study addresses the limitations of existing software, such as RIDO, in predicting settlements and deformations affecting nearby buildings due to the substantial load supported by sheet pile walls. This information gap necessitates a comprehensive study to assess potential impacts on adjacent structures and propose suitable mitigation measures. The research underscores the intricate dynamics between sheet pile wall construction and its influence on the local environment. It emphasizes the critical importance of proactive engineering and vigilant monitoring in managing and mitigating potential hazards to nearby buildings. To mitigate these risks, the paper recommends measures such as deep foundations, ground improvement techniques, and retrofitting. The findings presented in this study contribute significantly to the field of civil engineering and offer invaluable insights into the multifaceted dynamics of construction-induced settlement. The study underscores the importance of continuous evaluation and coordination between construction teams and building owners to effectively manage the impacts of sheet pile wall construction on adjacent structures.
文摘Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference.
基金supported by the Finance Science and Technology Project of Hainan Province(No.ZDKJ202019)the Key Research and Development Program of Zhejiang Province(No.2021C03014)the Natural Science Foundation of Zhejiang Province(No.LR22E080005),China.
文摘The cement mixing (CM) pile is a common method of improving soft offshore ground. The strength growth of CM piles under complex conditions is affected by many factors, especially the cement and moisture contents, and shows significant uncertainty. To investigate the stochasticity of the early strength of CM piles and its impact on the displacement and stability of a seawall, a series of laboratory tests and numerical analyses were carried out in this study. Vane shear tests were conducted on the cement-solidified soil to determine the relationships between the undrained shear strength s_(u) of the cement soil curing in the seawater and the cement content a_(c), as well as the in situ soil moisture content w. It can be inferred that the 24 h undrained shear strength follows a normal distribution. A numerical model considering the random CM pile strength was established to investigate the deformation of the seawall. Due to the uncertainty of CM pile strength, the displacement of the seawall demonstrates a certain discreteness. The decrease of the mean undrained shear strength of CM piles causes a corresponding increase in the average displacement of the seawall. When the mean strength of CM piles is lower than a certain threshold, there is a risk of instability. Furthermore, the heterogeneity of the strength within an individual CM pile also has an impact on seawall displacement. Attention should be paid to the uncertainty of CM pile strength to control displacement and stability.
基金National Science and Technology Support Program(No.2006BAG04B05)
文摘This paper,from three aspects including construction conditions,foundation design and construction,introduces some considerations in the designing of main-pylon foundations and some practical measures to deal with certain unfavorable construction conditions,such as deep water,tidal effect,soft stratum and heavy traffic,during the construction of main-pylon foundations.
文摘The development of urbanization has led to an increase in the number and scale of construction projects and the types of building construction engineering are getting advance and diverse due to the rapid development of technology.One of them is the static pressure prestressed pipe pile which is the most commonly used technology in modern building construction work.It is mainly used for pile foundation in construction work,and it has the advantages in less pollution,low noise,and high efficiency compared to the traditional pile foundation.Study on the characteristics of static pressure prestressed pipe pile must be carried out and strengthened the research to increase the effectiveness and quality of static pressure prestressed pipe pile on construction works.This paper is mainly to analyzed the characteristic and construction technology of static pressure prestressed pipe piles on building construction work.
文摘Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the rapid increase of high-rise buildings,skyscrapers and underground buildings,the construction technology of deep foundation pit support has gradually become an indispensable construction technology.Therefore,the selection of foundation pit support construction technology is crucial in ensuring that whether the foundation is firm and stable,and whether the subsequent construction activities can be carried out smoothly.In view of this,the article discusses the application of deep foundation pit support construction technology in municipal civil engineering,aiming to provide reference for subsequent projects.
文摘In order to improve the quality of bored piles in bridge construction and ensure the overall quality of the bridge,we analyzed a series of problems in the construction process of bored piles,then propose corresponding quality control measures,in hopes of improving quality control of bored piles in bridge construction in our country.