This paper is concerned with the existence and uniqueness of solution for a class of stochastic functional equation: X =φ(X), where φ: B → B and B is a Banach space consisted of all left-continuous, (■_t)-adapted ...This paper is concerned with the existence and uniqueness of solution for a class of stochastic functional equation: X =φ(X), where φ: B → B and B is a Banach space consisted of all left-continuous, (■_t)-adapted processes. Also, the main result is applied to some S.D.E (or S.I.E.). And the authors adopted some of the results in current research in the models of stochastic control recently. This paper proves the ekistence and uniquence and uniqueness of solution for stochastic functional equation. A series of corollaries are deduced from the special examples of the theorems in this paper.展开更多
Determination of probable mechanism function and kinetic parameters is important to hydrometallurgical kinetics.In this work,the most probable mechanism function and kinetic parameters of gibbsite dissolution in NaOH ...Determination of probable mechanism function and kinetic parameters is important to hydrometallurgical kinetics.In this work,the most probable mechanism function and kinetic parameters of gibbsite dissolution in NaOH solution are studied.The sample,the mixture of synthetic gibbsite and sodium hydroxide solution,was scanned in high-pressure differential scanning calorimetry(DSC) equipment with the heating rate of 10 K·min-1. Integral equation and differential equation of non-isothermal kinetics were solved to fit the data related to DSC curve.According to the calculation results,the most probable mechanism function for pure synthetic gibbsite dissolution in sodium hydroxide solution is presented based on the optimum procedure in the database of the mechanism function.The apparent activation energy obtained is(75±1) kJ·mol-1,the frequency factor is 10 8±1mol·s-1,and the reaction is a second order reaction.展开更多
Any composition sequential mapping, periodic composition mapping of a complete non-empty metric space M into M with geometric mean contraction ratio less than 1 ( simplifying as 'g-contraction mapping' ) has a...Any composition sequential mapping, periodic composition mapping of a complete non-empty metric space M into M with geometric mean contraction ratio less than 1 ( simplifying as 'g-contraction mapping' ) has a unique fixed point in M . Applications of the theorem to the proof of existence and uniqueness of the solutions of a set of non-linear differential equations and a coupled integral equations of symmetric bending of shallow shell of revolution are given.展开更多
The generalized KdV equation is a typical integr-able equation. It is derived studying the dissemination of magnet sound wave in coldplasma ̄[2], Ihe isolated wave in transmission line ̄[3], and the isolated wave in t...The generalized KdV equation is a typical integr-able equation. It is derived studying the dissemination of magnet sound wave in coldplasma ̄[2], Ihe isolated wave in transmission line ̄[3], and the isolated wave in the bound-ary surface of the divided layer fluid ̄[4]. For the characteristic problem of the gene-ralized KdV equation, this paper, based on the Riemann function, designs a suitablestructure, then changes the characteristic problem to an equivalent integral and dif-ferential equation whose corresponding fixed point, the above integral differential equ-ation has a unique regular solution, so the characteristic problem of the generalizedKdV equation has a. unique solution. The iteration solution derived from the integraldifferential equation sequence is uniformly convegent in.展开更多
The closure of the bounded domains D in Cnconsists of a chain of the slit spaces,and may be divided into two types. Based on the two types of bounded domains in C^n, firstly using different method and technique we der...The closure of the bounded domains D in Cnconsists of a chain of the slit spaces,and may be divided into two types. Based on the two types of bounded domains in C^n, firstly using different method and technique we derive the corresponding integral representation formulas of differentiable functions for complex n-m(0 ≤ m < n) dimensional analytic varieties in the two types of the bounded domains. Secondly we obtain the unified integral representation formulas of differentiable functions for complex n-m(0 ≤ m < n) dimensional analytic varieties in the general bounded domains. When functions are holomorphic, the integral formulas in this paper include formulas of Stout^([1]), Hatziafratis^([2]) and the author^([3]),and are the extension of all the integral representations for holomorphic functions in the existing papers to analytic varieties. In particular, when m = 0, firstly we gave the integral representation formulas of differentiable functions for the two types of bounded domains in C^n. Therefore they can make the concretion of Leray-Stokes formula. Secondly we obtain the unified integral representation formulas of differentiable functions for general bounded domains in C^n. So they can make the Leray-Stokes formula generalizations.展开更多
We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law ...We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented.展开更多
We obtain subordination, superordination and sandwich-preserving new theorems for certain integral operators defined on the space of normalized analytic functions in the open unit disk. The sandwich-type theorem for t...We obtain subordination, superordination and sandwich-preserving new theorems for certain integral operators defined on the space of normalized analytic functions in the open unit disk. The sandwich-type theorem for these integral operators is also derived, and the results generalize some recently ones.展开更多
This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method extended to functional integ...This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method extended to functional integral and integro-differential equations. For showing efficiency of the method we give some numerical examples.展开更多
H stability is a new and important concept. In this paper,we discuss the equationx(t)=-a(t)x(t)+∫ t -∞ k(t,s-t,x(s)) d sand we gain a new decision theorem. Using this decision theorem,we obtained a very extensive re...H stability is a new and important concept. In this paper,we discuss the equationx(t)=-a(t)x(t)+∫ t -∞ k(t,s-t,x(s)) d sand we gain a new decision theorem. Using this decision theorem,we obtained a very extensive result of the H uniformly asymptotical stability of this equation. That is,eliminating the restriction that a(t) is bounded.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
The aim of this paper deals with the study of the Horn matrix function of two complex variables. The convergent properties, an integral representation of H2(A,A′,B,B′;C;z,w) is obtained and recurrence matrix relatio...The aim of this paper deals with the study of the Horn matrix function of two complex variables. The convergent properties, an integral representation of H2(A,A′,B,B′;C;z,w) is obtained and recurrence matrix relations are given. Some result when operating on Horn matrix function with the differential operator D and a solution of certain partial differential equations are established. The Hadamard product of two Horn’s matrix functions is studied, certain results as, the domain of regularity, contiguous functional relations and operating with the differential operator D and D2 are established.展开更多
The integral representation of differentiable functions in Octonion space is obtained and the explicit solution of the inhomogeneous Cauchy-Riemann equation is given by integral representation. As an application, the ...The integral representation of differentiable functions in Octonion space is obtained and the explicit solution of the inhomogeneous Cauchy-Riemann equation is given by integral representation. As an application, the Cousin problem analogue of Mittag-Laffier problem is discussed.展开更多
A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper pr...A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method.展开更多
文摘This paper is concerned with the existence and uniqueness of solution for a class of stochastic functional equation: X =φ(X), where φ: B → B and B is a Banach space consisted of all left-continuous, (■_t)-adapted processes. Also, the main result is applied to some S.D.E (or S.I.E.). And the authors adopted some of the results in current research in the models of stochastic control recently. This paper proves the ekistence and uniquence and uniqueness of solution for stochastic functional equation. A series of corollaries are deduced from the special examples of the theorems in this paper.
基金Supported by the Research Fund for the Doctoral Program of Higher Education(20050145029)the Science and Technology Talents Fund for Excellent Youth of Liaoning Province(2005221012)
文摘Determination of probable mechanism function and kinetic parameters is important to hydrometallurgical kinetics.In this work,the most probable mechanism function and kinetic parameters of gibbsite dissolution in NaOH solution are studied.The sample,the mixture of synthetic gibbsite and sodium hydroxide solution,was scanned in high-pressure differential scanning calorimetry(DSC) equipment with the heating rate of 10 K·min-1. Integral equation and differential equation of non-isothermal kinetics were solved to fit the data related to DSC curve.According to the calculation results,the most probable mechanism function for pure synthetic gibbsite dissolution in sodium hydroxide solution is presented based on the optimum procedure in the database of the mechanism function.The apparent activation energy obtained is(75±1) kJ·mol-1,the frequency factor is 10 8±1mol·s-1,and the reaction is a second order reaction.
文摘Any composition sequential mapping, periodic composition mapping of a complete non-empty metric space M into M with geometric mean contraction ratio less than 1 ( simplifying as 'g-contraction mapping' ) has a unique fixed point in M . Applications of the theorem to the proof of existence and uniqueness of the solutions of a set of non-linear differential equations and a coupled integral equations of symmetric bending of shallow shell of revolution are given.
文摘The generalized KdV equation is a typical integr-able equation. It is derived studying the dissemination of magnet sound wave in coldplasma ̄[2], Ihe isolated wave in transmission line ̄[3], and the isolated wave in the bound-ary surface of the divided layer fluid ̄[4]. For the characteristic problem of the gene-ralized KdV equation, this paper, based on the Riemann function, designs a suitablestructure, then changes the characteristic problem to an equivalent integral and dif-ferential equation whose corresponding fixed point, the above integral differential equ-ation has a unique regular solution, so the characteristic problem of the generalizedKdV equation has a. unique solution. The iteration solution derived from the integraldifferential equation sequence is uniformly convegent in.
文摘The closure of the bounded domains D in Cnconsists of a chain of the slit spaces,and may be divided into two types. Based on the two types of bounded domains in C^n, firstly using different method and technique we derive the corresponding integral representation formulas of differentiable functions for complex n-m(0 ≤ m < n) dimensional analytic varieties in the two types of the bounded domains. Secondly we obtain the unified integral representation formulas of differentiable functions for complex n-m(0 ≤ m < n) dimensional analytic varieties in the general bounded domains. When functions are holomorphic, the integral formulas in this paper include formulas of Stout^([1]), Hatziafratis^([2]) and the author^([3]),and are the extension of all the integral representations for holomorphic functions in the existing papers to analytic varieties. In particular, when m = 0, firstly we gave the integral representation formulas of differentiable functions for the two types of bounded domains in C^n. Therefore they can make the concretion of Leray-Stokes formula. Secondly we obtain the unified integral representation formulas of differentiable functions for general bounded domains in C^n. So they can make the Leray-Stokes formula generalizations.
基金Project supported by the National Natural Science Foundation of China(No.12172169)the Natural Sciences and Engineering Research Council of Canada(No.NSERC RGPIN-2023-03227)。
文摘We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented.
文摘We obtain subordination, superordination and sandwich-preserving new theorems for certain integral operators defined on the space of normalized analytic functions in the open unit disk. The sandwich-type theorem for these integral operators is also derived, and the results generalize some recently ones.
文摘This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method extended to functional integral and integro-differential equations. For showing efficiency of the method we give some numerical examples.
文摘H stability is a new and important concept. In this paper,we discuss the equationx(t)=-a(t)x(t)+∫ t -∞ k(t,s-t,x(s)) d sand we gain a new decision theorem. Using this decision theorem,we obtained a very extensive result of the H uniformly asymptotical stability of this equation. That is,eliminating the restriction that a(t) is bounded.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
文摘The aim of this paper deals with the study of the Horn matrix function of two complex variables. The convergent properties, an integral representation of H2(A,A′,B,B′;C;z,w) is obtained and recurrence matrix relations are given. Some result when operating on Horn matrix function with the differential operator D and a solution of certain partial differential equations are established. The Hadamard product of two Horn’s matrix functions is studied, certain results as, the domain of regularity, contiguous functional relations and operating with the differential operator D and D2 are established.
基金Supported by the National Natural Science Foundation of China(11171298)the Zhejiang Natural Science Foundation of China(Y6110425)
文摘The integral representation of differentiable functions in Octonion space is obtained and the explicit solution of the inhomogeneous Cauchy-Riemann equation is given by integral representation. As an application, the Cousin problem analogue of Mittag-Laffier problem is discussed.
基金Project supported bY the National Natural Science Foundation of China (Grant No.50375085), and the Natural Science Foundation of Shandong Province (Grant No.Y2002F13)
文摘A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method.