Trace elements are found in small concentrations in soil, yet plants require them for physiological functions. The runoff process leads to soil fertility loss by shifting soil particles and elements, and deposits them...Trace elements are found in small concentrations in soil, yet plants require them for physiological functions. The runoff process leads to soil fertility loss by shifting soil particles and elements, and deposits them to a different position. However, there is a lack of information about the amount of trace elements that flow in tobacco-growing red soil during the natural rainy seasons due to runoff. In this study, runoff discharge was collected from two different soil mulching conditions (straw and no straw) at 15?, in Miyi county of Sichuan province, to evaluate the characteristics of trace elements in runoff discharge. The runoff discharge was filtered to separate water (runoff) from sediment. The concentrations of the elements were analyzed in samples obtained from 9 erosive rainfall events, with 3 replications for every sample. The considered trace elements were Zinc (Zn), Copper (Cu), and Molybdenum (Mo). In addition, the total amount of each element loss per unit area (total loss) was also calculated statistically. The results revealed different concentrations and total losses for the selected trace elements. The total loss in runoff ranged from 10.82 to 194.05 mg/ha, 0.62 to 18.91 mg/ha, and 0.32 to 2.37 mg/ha for Zn, Cu, and Mo, respectively. The total loss in sediment ranged from 54.65 to 12036.34 mg/ha, 44.74 to 5285.30 mg/ha, and 1.78 to 399.82 mg/ha for Zn, Cu, and Mo, respectively. Rainfall intensity, runoff depth, and sediment yield showed distinct positive correlations with the trace elements losses. The loss reduced with the addition of straw in the experimental area. Since each trace element showed distinct characteristics in the runoff and sediment, it is crucial to assess the loss of trace elements in runoff discharge from different agronomic practices. In turn, various sustainable practices of preventing soil fertility loss will be identified.展开更多
文摘Trace elements are found in small concentrations in soil, yet plants require them for physiological functions. The runoff process leads to soil fertility loss by shifting soil particles and elements, and deposits them to a different position. However, there is a lack of information about the amount of trace elements that flow in tobacco-growing red soil during the natural rainy seasons due to runoff. In this study, runoff discharge was collected from two different soil mulching conditions (straw and no straw) at 15?, in Miyi county of Sichuan province, to evaluate the characteristics of trace elements in runoff discharge. The runoff discharge was filtered to separate water (runoff) from sediment. The concentrations of the elements were analyzed in samples obtained from 9 erosive rainfall events, with 3 replications for every sample. The considered trace elements were Zinc (Zn), Copper (Cu), and Molybdenum (Mo). In addition, the total amount of each element loss per unit area (total loss) was also calculated statistically. The results revealed different concentrations and total losses for the selected trace elements. The total loss in runoff ranged from 10.82 to 194.05 mg/ha, 0.62 to 18.91 mg/ha, and 0.32 to 2.37 mg/ha for Zn, Cu, and Mo, respectively. The total loss in sediment ranged from 54.65 to 12036.34 mg/ha, 44.74 to 5285.30 mg/ha, and 1.78 to 399.82 mg/ha for Zn, Cu, and Mo, respectively. Rainfall intensity, runoff depth, and sediment yield showed distinct positive correlations with the trace elements losses. The loss reduced with the addition of straw in the experimental area. Since each trace element showed distinct characteristics in the runoff and sediment, it is crucial to assess the loss of trace elements in runoff discharge from different agronomic practices. In turn, various sustainable practices of preventing soil fertility loss will be identified.