In this paper,we investigate the complex symmetric structure of Toeplitz operators T_(φ)on the Hardy space over the bidisk.We first characterize the weighted composition operators,W_(u,v)which are J-symmetric and uni...In this paper,we investigate the complex symmetric structure of Toeplitz operators T_(φ)on the Hardy space over the bidisk.We first characterize the weighted composition operators,W_(u,v)which are J-symmetric and unitary.As a consequence,we characterize conjugations of the form A_(u,v).In addition,a class of conjugations of the form C_(λ,a)is introduced.We show that the class of conjugations C_(λ,a)coincides with the class of conjugations A_(u,v);we then characterize the complex symmetry of the Toeplitz operators T_(φ)with respect to the conjugation C_(λ,a).展开更多
Important operator characteristics (such boundedness or compactness) for particular classes of operators on particular reproducing kernel Hilbert spaces may be impacted by the behaviour of the operators on the reprodu...Important operator characteristics (such boundedness or compactness) for particular classes of operators on particular reproducing kernel Hilbert spaces may be impacted by the behaviour of the operators on the reproducing kernels. These results have been shown for Toeplitz operators on the Paley-Wiener space, a reproducing kernel Hilbert space over C. Furthermore, we show how the norm of such an operator has no relation to the supremum of the norms of the pictures of the normalization reproducing kernels of the space. As a result, if this supremum is finite, the operator is implicitly bounded. To further demonstrate that the operator norm is not the same as the supremum of the norms of the pictures of the real normalized reproducing kernels, another example is also provided. We also set out a necessary and sufficient condition for the operators’ compactness in terms of their limiting function on the reproducing kernels.展开更多
The convergence of several Galerkin-Petrov methods, including polynomial collocation and analytic element collocation methods of Toeplitz operators on Dirichlet space, is established. In particular, it is shown that s...The convergence of several Galerkin-Petrov methods, including polynomial collocation and analytic element collocation methods of Toeplitz operators on Dirichlet space, is established. In particular, it is shown that such methods converge if the basis and test function own certain circular symmetry.展开更多
In this paper we consider the block Toeplitz operators TФ on the weighted Bergman space A2α(D, Cn) and we give a necessary and sufficient condition for the hyponor-mality of block Toeplitz operators with symbol in...In this paper we consider the block Toeplitz operators TФ on the weighted Bergman space A2α(D, Cn) and we give a necessary and sufficient condition for the hyponor-mality of block Toeplitz operators with symbol in the class of functions Ф=F + G* withmatrix-valued polynomial functions F and G with degree 2.展开更多
We study Toeplitz operators from Hardy spaces to weighted Bergman spaces in the unit ball of C^(n).Toeplitz operators are closely related to many classical mappings,such as composition operators,the Volterra type inte...We study Toeplitz operators from Hardy spaces to weighted Bergman spaces in the unit ball of C^(n).Toeplitz operators are closely related to many classical mappings,such as composition operators,the Volterra type integration operators and Carleson embeddings.We characterize the boundedness and compactness of Toeplitz operators from Hardy spaces H^(p) to weighted Bergman spaces A_(α)^(q) for the different values of p and q in the unit ball.展开更多
Let φ be a normal function defined on [0, 1) and A^p(φ) Bergman space weighted with φ~p(|z|)/(1-|z|~2) for 1≤p<∞. The compactnesses of Toeplitz operaters on A^p(φ) are characterized by Carleson measures and o...Let φ be a normal function defined on [0, 1) and A^p(φ) Bergman space weighted with φ~p(|z|)/(1-|z|~2) for 1≤p<∞. The compactnesses of Toeplitz operaters on A^p(φ) are characterized by Carleson measures and operator algebra.展开更多
Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm...Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm of Toeplitz operator Tt is equivalent to ||t|| when t is hyponormal operator in M.展开更多
In this article,we study some characterizations of Toeplitz operators with positive operator-valued function as symbols on the vector-valued generalized Bargmann-Fock spaces Fψ^2.Main results including Fock-Carleson ...In this article,we study some characterizations of Toeplitz operators with positive operator-valued function as symbols on the vector-valued generalized Bargmann-Fock spaces Fψ^2.Main results including Fock-Carleson condition,bounded Toeplitz operators,compact Toeplitz operators,and Toeplitz operators in the Schatten-p class are all considered.展开更多
In this paper, we investigate the Toeplitz operators with positive measure symbols on the Bergman spaces of bounded multi-connected domains and show that a Toeplitz operator is bounded or compact if and only if the sy...In this paper, we investigate the Toeplitz operators with positive measure symbols on the Bergman spaces of bounded multi-connected domains and show that a Toeplitz operator is bounded or compact if and only if the symbol measure is a Carleson or vanishing Carleson measure respectively.展开更多
In this paper,we study unbounded complex symmetric Toeplitz operators on the Hardy space H^(2)(D) and the Fock space g^(2).The technique used to investigate the complex symmetry of unbounded Toeplitz operators is diff...In this paper,we study unbounded complex symmetric Toeplitz operators on the Hardy space H^(2)(D) and the Fock space g^(2).The technique used to investigate the complex symmetry of unbounded Toeplitz operators is different from that used to investigate the complex symmetry of bounded Toeplitz operators.展开更多
We completely characterize commutativity of S and Sψ on La2(Dn)⊥ for bounded pluriharmonic symbols and ψ on Dn, and prove that SSψ = Sψ if and only if is analytic or ψˉ is analytic.
Denote by Ω the Siegel domain in Cn, n 〉 1. In this paper, we study the essential spectra of Toeplitz operators defined on the Hardy space H2(а↓Ω). In addition, the characteristic equation of analytic Toeplitz ...Denote by Ω the Siegel domain in Cn, n 〉 1. In this paper, we study the essential spectra of Toeplitz operators defined on the Hardy space H2(а↓Ω). In addition, the characteristic equation of analytic Toeplitz operators iааs obtained.展开更多
In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol Sψ(z) on Nφ has at least m non-trivial minimal reducing subspaces, where m is the dimension of H^2(Гω)⊙φ(ω)H^2(Гω...In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol Sψ(z) on Nφ has at least m non-trivial minimal reducing subspaces, where m is the dimension of H^2(Гω)⊙φ(ω)H^2(Гω). Moreover, the restriction of Sψ(z) on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift Mz.展开更多
For any given symmetric measure μ on the closed unit disk D, we apply the Berezin transform to characterizing semi-commuting and commuting Toeplitz operators with bounded harmonic symbols on A2(D, dμ).
We consider Toeplitz operators Tu with symbol u on the Bergman space of the unit ball,and then study the convergences and summability for the sequences of powers of Toeplitz operators.We first charactreize analytic sy...We consider Toeplitz operators Tu with symbol u on the Bergman space of the unit ball,and then study the convergences and summability for the sequences of powers of Toeplitz operators.We first charactreize analytic symbolsφfor which the sequence Tφ*kf or Tφkf converges to 0 or∞as k→∞in norm for every nonzero Bergman function f.Also,we characterize analytic symbolsφfor which the norm of such a sequence is summable or not summable.We also study the corresponding problems on an infinite direct sum of Bergman spaces as a generalization of our result.展开更多
In this paper we characterize the essential spectra of Toeplitz operators on Bergman spaces by using Douglas’ localization Theorem and obtain the local decomposition of the essential spectra of Toeplitz operators.
基金partially the National Natural Science Foundation of China(11771340,12101179,12171373)。
文摘In this paper,we investigate the complex symmetric structure of Toeplitz operators T_(φ)on the Hardy space over the bidisk.We first characterize the weighted composition operators,W_(u,v)which are J-symmetric and unitary.As a consequence,we characterize conjugations of the form A_(u,v).In addition,a class of conjugations of the form C_(λ,a)is introduced.We show that the class of conjugations C_(λ,a)coincides with the class of conjugations A_(u,v);we then characterize the complex symmetry of the Toeplitz operators T_(φ)with respect to the conjugation C_(λ,a).
文摘Important operator characteristics (such boundedness or compactness) for particular classes of operators on particular reproducing kernel Hilbert spaces may be impacted by the behaviour of the operators on the reproducing kernels. These results have been shown for Toeplitz operators on the Paley-Wiener space, a reproducing kernel Hilbert space over C. Furthermore, we show how the norm of such an operator has no relation to the supremum of the norms of the pictures of the normalization reproducing kernels of the space. As a result, if this supremum is finite, the operator is implicitly bounded. To further demonstrate that the operator norm is not the same as the supremum of the norms of the pictures of the real normalized reproducing kernels, another example is also provided. We also set out a necessary and sufficient condition for the operators’ compactness in terms of their limiting function on the reproducing kernels.
基金Supported by the National Natural Science Foundation of China (10371082)Chinese National Natural Science Foundation Committee Tianyuan Foundation (10526040)Guangzhou University Doctor Foundation (WXF-1001)
文摘The convergence of several Galerkin-Petrov methods, including polynomial collocation and analytic element collocation methods of Toeplitz operators on Dirichlet space, is established. In particular, it is shown that such methods converge if the basis and test function own certain circular symmetry.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2009-0093827)
文摘In this paper we consider the block Toeplitz operators TФ on the weighted Bergman space A2α(D, Cn) and we give a necessary and sufficient condition for the hyponor-mality of block Toeplitz operators with symbol in the class of functions Ф=F + G* withmatrix-valued polynomial functions F and G with degree 2.
基金supported by the National Natural Science Foundation of China(11771441 and 11601400)。
文摘We study Toeplitz operators from Hardy spaces to weighted Bergman spaces in the unit ball of C^(n).Toeplitz operators are closely related to many classical mappings,such as composition operators,the Volterra type integration operators and Carleson embeddings.We characterize the boundedness and compactness of Toeplitz operators from Hardy spaces H^(p) to weighted Bergman spaces A_(α)^(q) for the different values of p and q in the unit ball.
基金Supported by Doctoral Program Foundation of Higher Education.
文摘Let φ be a normal function defined on [0, 1) and A^p(φ) Bergman space weighted with φ~p(|z|)/(1-|z|~2) for 1≤p<∞. The compactnesses of Toeplitz operaters on A^p(φ) are characterized by Carleson measures and operator algebra.
基金partly supported by Natural Science Foundation of the Xinjiang Uygur Autonomous Region(2013211A001)
文摘Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm of Toeplitz operator Tt is equivalent to ||t|| when t is hyponormal operator in M.
基金Supported by National Natural Science Foundation of China(11471084,11301101,11971125)Young Innovative Talent Project of Department of Edcucation of Guangdong Province(2017KQNCX220)the Natural Research Project of Zhaoqing University(221622).
文摘In this article,we study some characterizations of Toeplitz operators with positive operator-valued function as symbols on the vector-valued generalized Bargmann-Fock spaces Fψ^2.Main results including Fock-Carleson condition,bounded Toeplitz operators,compact Toeplitz operators,and Toeplitz operators in the Schatten-p class are all considered.
基金This work was supported by the NSF (19971061) of China and the Science Foundation ofFushun Petroleum Institute.
文摘In this paper, we investigate the Toeplitz operators with positive measure symbols on the Bergman spaces of bounded multi-connected domains and show that a Toeplitz operator is bounded or compact if and only if the symbol measure is a Carleson or vanishing Carleson measure respectively.
基金partially supported by the National Natural Science Foundation of China(11771340)。
文摘In this paper,we study unbounded complex symmetric Toeplitz operators on the Hardy space H^(2)(D) and the Fock space g^(2).The technique used to investigate the complex symmetry of unbounded Toeplitz operators is different from that used to investigate the complex symmetry of bounded Toeplitz operators.
基金Foundation item: Supported by the Science Foundation of Zhejiang Education Ha11(20040850)Acknowledgment The authors would like to thank the referee for his useful comment.
文摘We completely characterize commutativity of S and Sψ on La2(Dn)⊥ for bounded pluriharmonic symbols and ψ on Dn, and prove that SSψ = Sψ if and only if is analytic or ψˉ is analytic.
基金Supported by National Natural Science Foundation of China(11271092)Natural Science Foundation of Guangdong Province(s2011010005367)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20114410110001,20124410120002)SRF of Guangzhou Education Bureau(2012A088)
文摘Denote by Ω the Siegel domain in Cn, n 〉 1. In this paper, we study the essential spectra of Toeplitz operators defined on the Hardy space H2(а↓Ω). In addition, the characteristic equation of analytic Toeplitz operators iааs obtained.
文摘In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol Sψ(z) on Nφ has at least m non-trivial minimal reducing subspaces, where m is the dimension of H^2(Гω)⊙φ(ω)H^2(Гω). Moreover, the restriction of Sψ(z) on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift Mz.
基金The Specialized Research Fund (20050183002) for the Doctoral Program of Higher EducationNSF (10371049) of China
文摘For any given symmetric measure μ on the closed unit disk D, we apply the Berezin transform to characterizing semi-commuting and commuting Toeplitz operators with bounded harmonic symbols on A2(D, dμ).
基金supported by NSFC(11771401)the last author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1I1A3A01041943)。
文摘We consider Toeplitz operators Tu with symbol u on the Bergman space of the unit ball,and then study the convergences and summability for the sequences of powers of Toeplitz operators.We first charactreize analytic symbolsφfor which the sequence Tφ*kf or Tφkf converges to 0 or∞as k→∞in norm for every nonzero Bergman function f.Also,we characterize analytic symbolsφfor which the norm of such a sequence is summable or not summable.We also study the corresponding problems on an infinite direct sum of Bergman spaces as a generalization of our result.
文摘In this paper we characterize the essential spectra of Toeplitz operators on Bergman spaces by using Douglas’ localization Theorem and obtain the local decomposition of the essential spectra of Toeplitz operators.