The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi...The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.展开更多
AIM To determine the effects of ω-3 fatty acids(ω-3FA) on the toll-like receptor 4(TLR4)/nuclear factor κB p56(NF-κBp56) signal pathway in the lungs of rats with severe acute pancreatitis(SAP).METHODS A total of 5...AIM To determine the effects of ω-3 fatty acids(ω-3FA) on the toll-like receptor 4(TLR4)/nuclear factor κB p56(NF-κBp56) signal pathway in the lungs of rats with severe acute pancreatitis(SAP).METHODS A total of 56 Sprague-Dawley rats were randomly divided into 4 groups: control group, SAP-saline group, SAP-soybean oil group and SAP-ω-3FA group. SAP was induced by the retrograde infusion of sodium taurocholate into the pancreatic duct. The expression of TLR4 and NF-κBp56 in the lungs was evaluated by immunohistochemistry and Western blot analysis. The levels of inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha in the lungs were measured by enzyme-linked immunosorbent assay. RESULTS The expression of TLR4 and NF-κBp56 in lungs and of inflammatory cytokines in serum significantly increased in the SAP group compared with the control group(P < 0.05), but was significantly decreased in the ω-3FA group compared with the soybean oil group at 12 and 24 h(P < 0.05).CONCLUSION During the initial stage of SAP, ω-3FA can efficiently lower the inflammatory response and reduce lung injury by triggering the TLR4/NF-κBp56 signal pathway.展开更多
BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therap...BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.展开更多
OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituen...OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatographyquadrupole time-of-flight mass spectrometry method.Then,HEL was found to suppress LPS-induced ALI in vivo.Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups:control,LPS,Dexamethasone(Dex),HEL low dose 6 g/kg(HEL-L),HEL medium dose 18 g/kg(HEL-M)and HEL high dose 54 g/kg(HEL-H)groups.The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model.Leukocyte counts,lung wet/dry weight ratio,as well as myeloperoxidase(MPO)activity were determined followed by the detection with hematoxylin and eosin staining,enzyme linked immunosorbent assay,quantitative real time polymerase chain reaction,western blotting,immunohistochemistry,and immunofluorescence.Besides,to explore the effect of HEL on ALI-mediated intestinal flora,we performed 16s rRNA sequencing analysis of intestinal contents.RESULTS:HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance.Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats,inhibited leukocytes exudation and MPO activity,and improved the pathological injury of lung tissue.In addition,HEL reduced the expression of tumor necrosis factoralpha,interleukin-1beta(IL-1β)and interleukin-6(IL-6)in bronchoalveolar lavage fluid and serum,and inhibited nuclear displacement of nuclear factor kappa-B p65(NF-κBp65).And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88,NF-κBp65,phosphorylated inhibitor kappa B alpha(phospho-IκBα),nod-like receptor family pyrin domain-containing 3 protein(NLRP3),IL-1β,and interleukin-18(IL-18)in lung tissue,and regulated intestinal flora disturbance.CONCLUSIONS:In summary,our findings revealed that HEL has a protective effect on LPS-induced ALI in rats,and its mechanism may be related to inhibiting TLR4/NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.展开更多
OBJECTIVE:To examine the nephroprotective mechanism of modified Huangqi Chifeng decoction(加味黄芪赤风汤,MHCD)in immunoglobulin A nephropathy(IgAN)rats.METHODS:To establish the IgAN rat model,the bovine serum albumin,...OBJECTIVE:To examine the nephroprotective mechanism of modified Huangqi Chifeng decoction(加味黄芪赤风汤,MHCD)in immunoglobulin A nephropathy(IgAN)rats.METHODS:To establish the IgAN rat model,the bovine serum albumin,lipopolysaccharide,and carbon tetrachloride 4 method was employed.The rats were then randomly assigned to the control,model,telmisartan,and high-,medium-,and low-dose MHCD groups,and were administered the respective treatments via intragastric administration for 8 weeks.The levels of 24-h urinary protein,serum creatinine(CRE),and blood urea nitrogen(BUN)were measured in each group.Pathological alterations were detected.IgA deposition was visualized through the use of immunofluorescence staining.The ultrastructure of the kidney was observed using a transmission electron microscope.The expression levels of interleukin-6(IL-6),monocyte chemoattractant protein-1(MCP-1),and transforming growth factor-β1(TGF-β1)were examined by immunohistochemistry and quantitative polymerase chain reaction.Levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88(MyD88),and nuclear factor-kappa B(NF-κB)P65,were examined by immunohistochemistry,Western blotting,and quantitative polymerase chain reaction.RESULTS:The 24-h urine protein level in each group increased significantly at week 6,and worsen from then on.But this process can be reversed by treatments of telmisartan,and high-,medium-,and low-dose of MHCD,and these treatments did not affect renal function.Telmisartan,and high-,and medium-dose of MHCD reduced IgA deposition.Renal histopathology demonstrated the protective effect of high-,medium-,and low-dose of MHCD against kidney injury.The expression levels of MCP-1,IL-6,and TGF-β1 in kidney tissues were downregulated by low,medium and high doses of MHCD treatment.Additionally,treatment of low,medium and high doses of MHCD decreased the protein and mRNA levels of TLR4,MyD88,and NF-κB.CONCLUSIONS:MHCD exerted nephroprotective effects on IgAN rats,and MHCD regulated the expressions of key targets in TLR4/MyD88/NF-κB signaling pathway,thereby alleviating renal inflammation by inhibiting MCP-1,IL-6 expressions,and ameliorating renal fibrosis by inhibiting TGF-β1 expression.展开更多
Objective: To investigate whether remifentanil induced cardioprotecting effect is associated with expression of toll-like receptor 4 (TLR4), nuclear factor rB (NF-r.B) and serum interleukin -6 (IL-6). Methods:...Objective: To investigate whether remifentanil induced cardioprotecting effect is associated with expression of toll-like receptor 4 (TLR4), nuclear factor rB (NF-r.B) and serum interleukin -6 (IL-6). Methods: Fifty rabbits were randomly divided into 5 groups (n=10) according to the treatment: sham operation group (group A), ischemla-reperfusion group (group B), low-dose remifentanil group (group C), mediate-dose remifentanil group (group D), and high-dose remlfentanil group (group E) Myocardial TLR4 mRNA levels, NF-r.B protein expression and serum levels of IL-6 were observed in 120 min after reperfusion. Results: The myocardial expressions of TLR4 mRNA, NF-rd3 protein and IL-6 level in sera of groups B, C, D and E were elevated compared with group A. However, remifentanil significantly reduced the levels of TLR4 mRNA, NF- r.B protein expression and serum IL-6 in groups C, D and E compared with group B. There were remarkable differences between the groups (P〈O.O1). Conclusion: Intravenous remifentanil has protective effect against rabbit myocardial ischemia/reperfusion injury. This effect may be associated with TLR4, NF-r.B expressions on myocytes and serum level of IL-6 in a dose-dependent manner展开更多
Corona Virus Disease 2019(COVID-19)has brought the new challenges to scientific research.Isodon suzhouensis has good anti-inflammatory and antioxidant stress effects,which is considered as a potential treatment for CO...Corona Virus Disease 2019(COVID-19)has brought the new challenges to scientific research.Isodon suzhouensis has good anti-inflammatory and antioxidant stress effects,which is considered as a potential treatment for COVID-19.The possibility for the treatment of COVID-19 with I.suzhouensis and its potential mechanism of action were explored by employing molecular docking and network pharmacology.Network pharmacology and molecular docking were used to screen drug targets,and lipopolysaccharide(LPS)induced RAW264.7 and NR8383 cells inflammation model was used for experimental verification.Collectively a total of 209 possible linkages against 18 chemical components from I.suzhouensis and 1194 COVID-19 related targets were selected.Among these,164 common targets were obtained from the intersection of I.suzhouensis and COVID-19.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enriched 582 function targets and 87 target proteins pathways,respectively.The results from molecular docking studies revealed that rutin,vitexin,isoquercitrin and quercetin had significant binding ability with 3 chymotrypsin like protease(3CLpro)and angiotensin converting enzyme 2(ACE2).In vitro studies showed that I.suzhouensis extract(ISE)may inhibit the activation of PI3K/Akt pathway and the expression level of downstream proinflammatory factors by inhibiting the activation of epidermal growth factor receptor(EGFR)in RAW264.7 cells induced by LPS.In addition,ISE was able to inhibit the activation of TLR4/NF-κB signaling pathway in NR8383 cells exposed to LPS.Overall,the network pharmacology and in vitro studies conclude that active components from I.suzhouensis have strong therapeutic potential against COVID-19 through multi-target,multi-pathway dimensions and can be a promising candidate against COVID-19.展开更多
Lipopolysaccharide stimulates Toll-like receptor 4 on immune cells to produce immune mediators. Toll-like receptor 4 is also expressed by non-immune cells, which can be stimulated by lipopolysaccharide. However, wheth...Lipopolysaccharide stimulates Toll-like receptor 4 on immune cells to produce immune mediators. Toll-like receptor 4 is also expressed by non-immune cells, which can be stimulated by lipopolysaccharide. However, whether Toll-like receptor 4 is expressed by primary cultured hippocampal neurons and its specific role in lipopolysaccharide-induced neuroinflammation is currently undefined, in this study, Toll-like receptor 4 antibody blocking was used to analyze the Toll-like receptor 4 signaling pathway and changes in inflammation of lipopolysaccharide stimulated hippocampal neurons. Immunofluorescence showed that Toll-like receptor 4 protein was mainly located in the membrane of hippocampal neurons. Quantitative reverse transcription-PCR and western blot assay showed that after stimulation of lipopolysaccharide, the mRNA and protein levels of Toll-like receptor 4 and the mRNA levels of interleukin-ll3 and tumor necrosis factor-(] were significantly increased. In addition, there was increased phosphorylation and degradation of kappa B a inhibitor in the cytosol and increased nuclear factor-KB p65 expression in the nuclei. Pretreatment with Toll-like receptor 4 antibody could almost completely block this increase. These experimental findings indicate that lipopolysaccharide participates in neuroinflammation by stimulating Toll-like receptor 4/nuclear factor-KB pathway in hippocampal neurons, which may be both "passive victims" and "activators" of neuroinflammation.展开更多
文摘The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.
基金Supported by Jinling Hospital Research Fund,No.2013064
文摘AIM To determine the effects of ω-3 fatty acids(ω-3FA) on the toll-like receptor 4(TLR4)/nuclear factor κB p56(NF-κBp56) signal pathway in the lungs of rats with severe acute pancreatitis(SAP).METHODS A total of 56 Sprague-Dawley rats were randomly divided into 4 groups: control group, SAP-saline group, SAP-soybean oil group and SAP-ω-3FA group. SAP was induced by the retrograde infusion of sodium taurocholate into the pancreatic duct. The expression of TLR4 and NF-κBp56 in the lungs was evaluated by immunohistochemistry and Western blot analysis. The levels of inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha in the lungs were measured by enzyme-linked immunosorbent assay. RESULTS The expression of TLR4 and NF-κBp56 in lungs and of inflammatory cytokines in serum significantly increased in the SAP group compared with the control group(P < 0.05), but was significantly decreased in the ω-3FA group compared with the soybean oil group at 12 and 24 h(P < 0.05).CONCLUSION During the initial stage of SAP, ω-3FA can efficiently lower the inflammatory response and reduce lung injury by triggering the TLR4/NF-κBp56 signal pathway.
基金Supported by the Scientific Foundation of Administration of Traditional Chinese Medicine of Hebei Province,China,No.2023257.
文摘BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.
基金Natural Science Foundation Project of Chongqing Municipality:a Metabolome-based Study on the Protective Mechanism of Yemazhui(Herba Eupatorii Lindleyani)Sesquiterpene Lactones Against Acute Lung Injury(No.cstc2021jcyj-msxmX0365)Science and Technology Research Program of Chongqing Municipal Education Commission:a Cytokine Storm-based Study of the Protective Effect of Yemazhui(Herba Eupatorii Lindleyani)Extract Intervention on COVID-19 Lung Injury(No.KJZD-K202215101)。
文摘OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatographyquadrupole time-of-flight mass spectrometry method.Then,HEL was found to suppress LPS-induced ALI in vivo.Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups:control,LPS,Dexamethasone(Dex),HEL low dose 6 g/kg(HEL-L),HEL medium dose 18 g/kg(HEL-M)and HEL high dose 54 g/kg(HEL-H)groups.The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model.Leukocyte counts,lung wet/dry weight ratio,as well as myeloperoxidase(MPO)activity were determined followed by the detection with hematoxylin and eosin staining,enzyme linked immunosorbent assay,quantitative real time polymerase chain reaction,western blotting,immunohistochemistry,and immunofluorescence.Besides,to explore the effect of HEL on ALI-mediated intestinal flora,we performed 16s rRNA sequencing analysis of intestinal contents.RESULTS:HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance.Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats,inhibited leukocytes exudation and MPO activity,and improved the pathological injury of lung tissue.In addition,HEL reduced the expression of tumor necrosis factoralpha,interleukin-1beta(IL-1β)and interleukin-6(IL-6)in bronchoalveolar lavage fluid and serum,and inhibited nuclear displacement of nuclear factor kappa-B p65(NF-κBp65).And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88,NF-κBp65,phosphorylated inhibitor kappa B alpha(phospho-IκBα),nod-like receptor family pyrin domain-containing 3 protein(NLRP3),IL-1β,and interleukin-18(IL-18)in lung tissue,and regulated intestinal flora disturbance.CONCLUSIONS:In summary,our findings revealed that HEL has a protective effect on LPS-induced ALI in rats,and its mechanism may be related to inhibiting TLR4/NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.
基金Joint Innovation Fundation of JIICM:Health Management of Chronic Kidney Disease Based on Integrated Traditional Chinese And Western Medicine(No.2021IR009)Natural Science Foundation-funded Project:the Mechanism of Modified Huangqi Chifeng Decoction Protect Damaged Podocyte via Cross-Talking of PI3K/AKT/mTOR and AMPK/mTOR/ULK1 Signaling Pathway Regulate Autophapy(No.81873300)+1 种基金the Central Publicinterest Scientific Institution Basal Research Fund of the China Academy of Chinese Medical Sciences:Comprehensive Evaluation of Clinical efficacy of Modified Huangqi Chifeng Decoction on IgA Nephropathy(No.ZZ11-023)the Beijing Municipal of Science and Technology Major Project:Evaluation of Clinical Efficacy of Modified Huangqi Chifeng Decoction in Treating Proteinuria in IgA Nephropathy Based on"Deficiency-Wind-Blood-Stasis-Toxicity"Mechanism in Chinese Medicine(No.Z191100006619063)。
文摘OBJECTIVE:To examine the nephroprotective mechanism of modified Huangqi Chifeng decoction(加味黄芪赤风汤,MHCD)in immunoglobulin A nephropathy(IgAN)rats.METHODS:To establish the IgAN rat model,the bovine serum albumin,lipopolysaccharide,and carbon tetrachloride 4 method was employed.The rats were then randomly assigned to the control,model,telmisartan,and high-,medium-,and low-dose MHCD groups,and were administered the respective treatments via intragastric administration for 8 weeks.The levels of 24-h urinary protein,serum creatinine(CRE),and blood urea nitrogen(BUN)were measured in each group.Pathological alterations were detected.IgA deposition was visualized through the use of immunofluorescence staining.The ultrastructure of the kidney was observed using a transmission electron microscope.The expression levels of interleukin-6(IL-6),monocyte chemoattractant protein-1(MCP-1),and transforming growth factor-β1(TGF-β1)were examined by immunohistochemistry and quantitative polymerase chain reaction.Levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88(MyD88),and nuclear factor-kappa B(NF-κB)P65,were examined by immunohistochemistry,Western blotting,and quantitative polymerase chain reaction.RESULTS:The 24-h urine protein level in each group increased significantly at week 6,and worsen from then on.But this process can be reversed by treatments of telmisartan,and high-,medium-,and low-dose of MHCD,and these treatments did not affect renal function.Telmisartan,and high-,and medium-dose of MHCD reduced IgA deposition.Renal histopathology demonstrated the protective effect of high-,medium-,and low-dose of MHCD against kidney injury.The expression levels of MCP-1,IL-6,and TGF-β1 in kidney tissues were downregulated by low,medium and high doses of MHCD treatment.Additionally,treatment of low,medium and high doses of MHCD decreased the protein and mRNA levels of TLR4,MyD88,and NF-κB.CONCLUSIONS:MHCD exerted nephroprotective effects on IgAN rats,and MHCD regulated the expressions of key targets in TLR4/MyD88/NF-κB signaling pathway,thereby alleviating renal inflammation by inhibiting MCP-1,IL-6 expressions,and ameliorating renal fibrosis by inhibiting TGF-β1 expression.
基金Supported by Shaanxi Provincial Scientific and Technological Research Projects (2008K13-02)
文摘Objective: To investigate whether remifentanil induced cardioprotecting effect is associated with expression of toll-like receptor 4 (TLR4), nuclear factor rB (NF-r.B) and serum interleukin -6 (IL-6). Methods: Fifty rabbits were randomly divided into 5 groups (n=10) according to the treatment: sham operation group (group A), ischemla-reperfusion group (group B), low-dose remifentanil group (group C), mediate-dose remifentanil group (group D), and high-dose remlfentanil group (group E) Myocardial TLR4 mRNA levels, NF-r.B protein expression and serum levels of IL-6 were observed in 120 min after reperfusion. Results: The myocardial expressions of TLR4 mRNA, NF-rd3 protein and IL-6 level in sera of groups B, C, D and E were elevated compared with group A. However, remifentanil significantly reduced the levels of TLR4 mRNA, NF- r.B protein expression and serum IL-6 in groups C, D and E compared with group B. There were remarkable differences between the groups (P〈O.O1). Conclusion: Intravenous remifentanil has protective effect against rabbit myocardial ischemia/reperfusion injury. This effect may be associated with TLR4, NF-r.B expressions on myocytes and serum level of IL-6 in a dose-dependent manner
基金supported by the National Natural Science Foundation of China(82170481)Anhui Natural Science Foundation(2008085J39 and 2108085MH314)+2 种基金Excellent Top-notch Talents Training Program of Anhui Universities(gxbjZD2022073)Anhui Province Innovation Team of Authentic Medicinal Materials Development and High Value Utilization(2022AH010080)Suzhou University Joint Cultivation Postgraduate Research Innovation Fund Project(2023KYCX04).
文摘Corona Virus Disease 2019(COVID-19)has brought the new challenges to scientific research.Isodon suzhouensis has good anti-inflammatory and antioxidant stress effects,which is considered as a potential treatment for COVID-19.The possibility for the treatment of COVID-19 with I.suzhouensis and its potential mechanism of action were explored by employing molecular docking and network pharmacology.Network pharmacology and molecular docking were used to screen drug targets,and lipopolysaccharide(LPS)induced RAW264.7 and NR8383 cells inflammation model was used for experimental verification.Collectively a total of 209 possible linkages against 18 chemical components from I.suzhouensis and 1194 COVID-19 related targets were selected.Among these,164 common targets were obtained from the intersection of I.suzhouensis and COVID-19.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enriched 582 function targets and 87 target proteins pathways,respectively.The results from molecular docking studies revealed that rutin,vitexin,isoquercitrin and quercetin had significant binding ability with 3 chymotrypsin like protease(3CLpro)and angiotensin converting enzyme 2(ACE2).In vitro studies showed that I.suzhouensis extract(ISE)may inhibit the activation of PI3K/Akt pathway and the expression level of downstream proinflammatory factors by inhibiting the activation of epidermal growth factor receptor(EGFR)in RAW264.7 cells induced by LPS.In addition,ISE was able to inhibit the activation of TLR4/NF-κB signaling pathway in NR8383 cells exposed to LPS.Overall,the network pharmacology and in vitro studies conclude that active components from I.suzhouensis have strong therapeutic potential against COVID-19 through multi-target,multi-pathway dimensions and can be a promising candidate against COVID-19.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Nantong Applied Research Program,No.k2010036+1 种基金the 2011 Jiangsu Graduated Students' Research and Innovation Program,No.CX2211-0640the Nantong University Graduated Students' Technological and Innovative Program,No.YKC11033
文摘Lipopolysaccharide stimulates Toll-like receptor 4 on immune cells to produce immune mediators. Toll-like receptor 4 is also expressed by non-immune cells, which can be stimulated by lipopolysaccharide. However, whether Toll-like receptor 4 is expressed by primary cultured hippocampal neurons and its specific role in lipopolysaccharide-induced neuroinflammation is currently undefined, in this study, Toll-like receptor 4 antibody blocking was used to analyze the Toll-like receptor 4 signaling pathway and changes in inflammation of lipopolysaccharide stimulated hippocampal neurons. Immunofluorescence showed that Toll-like receptor 4 protein was mainly located in the membrane of hippocampal neurons. Quantitative reverse transcription-PCR and western blot assay showed that after stimulation of lipopolysaccharide, the mRNA and protein levels of Toll-like receptor 4 and the mRNA levels of interleukin-ll3 and tumor necrosis factor-(] were significantly increased. In addition, there was increased phosphorylation and degradation of kappa B a inhibitor in the cytosol and increased nuclear factor-KB p65 expression in the nuclei. Pretreatment with Toll-like receptor 4 antibody could almost completely block this increase. These experimental findings indicate that lipopolysaccharide participates in neuroinflammation by stimulating Toll-like receptor 4/nuclear factor-KB pathway in hippocampal neurons, which may be both "passive victims" and "activators" of neuroinflammation.