Background:Numerous studies have demonstrated the existence of approximately 7,500 genetic tomato varieties worldwide.Hence,it is crucial to assess the genetic diversity among tomato cultivars.This study aimed to inve...Background:Numerous studies have demonstrated the existence of approximately 7,500 genetic tomato varieties worldwide.Hence,it is crucial to assess the genetic diversity among tomato cultivars.This study aimed to investigate the genetic diversity of selected Iranian tomato cultivars(Solanum lycopersicum)using RAPD and ISSR molecular markers.Method:Ten RAPD primers and ten ISSR primers were employed to assess the genetic diversity among 10 tomato cultivars:Matin,RFT 112,Hirad,Golsar,Raha,Hengam,Hedah,Fasa,JS12,and Emerald.Data analysis involved the UPGMA algorithm and NTYSYSpc software.Results:RAPD analysis revealed close genetic proximity between Fasa and JS12,as well as between Raha and Hadieh.Conversely,the RFT 112,Hengam,Hirad,and Emerald cultivars exhibited significant genetic diversity within this group.ISSR primer analysis identified Hengam as the most diverse variety,while Matin,Emerald,and Vibrid,as well as Raha and JS12,displayed genetic similarities with minimal observed diversity.Furthermore,the overall analysis of the cultivars using RAPD and ISSR markers indicated that Hengam exhibited the highest diversity among all the varieties.Notably,Raha and JS12 demonstrated limited diversity in this analysis.Conclusion:This research demonstrates substantial genetic diversity among the investigated tomato varieties,with Hengam displaying the highest diversity within this group.Furthermore,ISSR markers proved more effective in determining genetic diversity in tomato plants.展开更多
RAPD and SSR were applied to assess genetic diversity in 61 tomato varieties from different species (Solanum lycopersicum L., hirsutum. Humb L., pimpinellifolium Miller L., chilense Dun. L., chmielenskii L., peruvian...RAPD and SSR were applied to assess genetic diversity in 61 tomato varieties from different species (Solanum lycopersicum L., hirsutum. Humb L., pimpinellifolium Miller L., chilense Dun. L., chmielenskii L., peruvianum Miller L., parvuflorum Miller L.). 2 062 and 869 clear fragments were amplified by RAPD and SSR, respectively. On the other hand, more polymorphic products were found by SSR as compared to RAPD, i.e., 100 and 43.84%, respectively. In addition, a higher value of the average similarity coefficient and lower PIC value were reflected in RAPD (0.79, 0.407) compared to SSR (0.56, 0.687). It can be inferred that SSR was a higher effective marker than RAPD to assess genetic diversity in tomato accessions. Similarly, the genetic base of tomato varieties in Chinese market was narrow. It is suggested that wild tomato varieties should be used to enrich the genetic base of the cultivated tomato varieties.展开更多
Covered smut, which is caused by Ustilago hordei(Pers.) Lagerh., is one of the most damaging diseases of highland barley(Hordeum vulgare Linn. var. nudum Hook. f) in Tibetan areas of China. To understand the molec...Covered smut, which is caused by Ustilago hordei(Pers.) Lagerh., is one of the most damaging diseases of highland barley(Hordeum vulgare Linn. var. nudum Hook. f) in Tibetan areas of China. To understand the molecular diversity of U. hordei, a total of 27 isolates, which were collected from highland barley plants from Tibet, Sichuan, Qinghai, and Gansu provinces/autonomous region, were analyzed using random amplified polymorphic DNA(RAPD) and simple sequence repeat(SSR) markers. Among the 100 RAPD primers used, 24 primers exhibited polymorphism. A total of 111 fragments were amplified, of which 103 were polymorphic with a polymorphic rate of 92.79%. The average observed number of alleles(Na), effective number of alleles(Ne), Nei's genetic diversity(H), Shannon's information index(I) and polymorphism information content(PIC) value in the RAPD markers were 1.9279, 1.5016, 0.2974, 0.4503 and 0.6428, respectively. For the SSR markers, 40 of the 111 primer pairs exhibited polymorphism and provided a total of 119 bands, of which 109 were polymorphic and accounted for 91.60% of the total bands. The Na, Ne, H, I and PIC values of the SSR markers were 1.9160, 1.4639, 0.2757, 0.4211 and 0.4340, respectively. The similarity coefficients ranged from 0.4957 to 0.9261 with an average of 0.7028 among all the 27 isolates used. The dendrogram, which was developed based on the RAPD and SSR combined marker dataset showed that the 27 U. hordei isolates were divided into 3 clusters at similarity coefficient of 0.7314. We determined that RAPD and SSR markers can be successfully used to assess the genetic variation among U. hordei isolates. The RAPD markers revealed higher levels of genetic polymorphism than did the SSR markers in this study. There existed a moderate genetic difference among isolates. The molecular variation and differentiation was somewhat associated with geographical origin but not for all of the isolates.展开更多
In recent years,with the continuous improvement and development of molecular technology in the application process,different types of DNA molecular markers have made rapid progress in the study of genetic diversity of...In recent years,with the continuous improvement and development of molecular technology in the application process,different types of DNA molecular markers have made rapid progress in the study of genetic diversity of rapeseed. The study of genetic diversity is conducive to the correct formulation of the strategy of collecting and in situ preservation of genetic resources of rapeseed,and it is the genetic basis for the improvement of rapeseed varieties. This article mainly starts with the three DNA molecular markers( SSR,RAPD,AFLP) widely used in the study of genetic diversity of rapeseed. By introducing the application principles and characteristics of SSR,RFPD and AFLP molecular markers,research progress of these three marker technologies in genetic diversity of rapeseed is briefly described.展开更多
To investigate the genetic diversity and relationships among the sweet sorghum varieties as energy sources currently bred in China, 13 sweet sorghum varieties were selected for comprehensive analysis through observati...To investigate the genetic diversity and relationships among the sweet sorghum varieties as energy sources currently bred in China, 13 sweet sorghum varieties were selected for comprehensive analysis through observations of 31 biological traits and examinations of RAPD and SSR molecular markers. The numerical analysis showed that the differences in biological traits existed among 13 varieties, and the genetic distance (DIST) ranged from 0.787 to 2.221, and the two varieties from Inner Mongolia and Xinjiang were distinctly separated from all other varieties. A total of 22 polymorphism primers were obtained from the screening using RAPD marker analysis. The polymorphism rate was 58.33%, and the genetic similarity (GS) coefficients among the studied cultivars ranged from 0.694 to 0.896. Cluster analysis results indicated that the three varieties from Inner Mongolia, Xinjiang and Heilongjiang exhibited significant genetic differences from the other varieties. SSR marker analysis using 31 selected pairs of polymorphic primers showed that the polymorphism rate of amplified fragments was 78.64%, and GS coefficients among the tested cultivars were 0.534 to 0.971. Cluster analysis showed that variety No. 12 from Xinjiang and variety No. 7 from Inner Mongolia clustered into one group, and variety No. 6 from Heilongjiang was in a single group. The other ten varieties were grouped into another separate cluster. The results based on combined data displayed a similar trend with results from the three individual data analyses, but could more comprehensively and objectively reflect the fundamental genetic differences among these varieties. In summary, certain genetic differences exist among the varieties tested from different regions or different breeding institutions. However, varieties from the same region, especially those from the same breeding institution, exhibited small genetic variations and high genetic similarities. At present, more attention should be paid to discovery and innovation in the breeding of sweet sorghum varieties.展开更多
文摘Background:Numerous studies have demonstrated the existence of approximately 7,500 genetic tomato varieties worldwide.Hence,it is crucial to assess the genetic diversity among tomato cultivars.This study aimed to investigate the genetic diversity of selected Iranian tomato cultivars(Solanum lycopersicum)using RAPD and ISSR molecular markers.Method:Ten RAPD primers and ten ISSR primers were employed to assess the genetic diversity among 10 tomato cultivars:Matin,RFT 112,Hirad,Golsar,Raha,Hengam,Hedah,Fasa,JS12,and Emerald.Data analysis involved the UPGMA algorithm and NTYSYSpc software.Results:RAPD analysis revealed close genetic proximity between Fasa and JS12,as well as between Raha and Hadieh.Conversely,the RFT 112,Hengam,Hirad,and Emerald cultivars exhibited significant genetic diversity within this group.ISSR primer analysis identified Hengam as the most diverse variety,while Matin,Emerald,and Vibrid,as well as Raha and JS12,displayed genetic similarities with minimal observed diversity.Furthermore,the overall analysis of the cultivars using RAPD and ISSR markers indicated that Hengam exhibited the highest diversity among all the varieties.Notably,Raha and JS12 demonstrated limited diversity in this analysis.Conclusion:This research demonstrates substantial genetic diversity among the investigated tomato varieties,with Hengam displaying the highest diversity within this group.Furthermore,ISSR markers proved more effective in determining genetic diversity in tomato plants.
基金supported by the National Natural Science Foundation of China(30901142,30760123)the Fundamental Research Funds for the Central Universities,China(DL09BA33)
文摘RAPD and SSR were applied to assess genetic diversity in 61 tomato varieties from different species (Solanum lycopersicum L., hirsutum. Humb L., pimpinellifolium Miller L., chilense Dun. L., chmielenskii L., peruvianum Miller L., parvuflorum Miller L.). 2 062 and 869 clear fragments were amplified by RAPD and SSR, respectively. On the other hand, more polymorphic products were found by SSR as compared to RAPD, i.e., 100 and 43.84%, respectively. In addition, a higher value of the average similarity coefficient and lower PIC value were reflected in RAPD (0.79, 0.407) compared to SSR (0.56, 0.687). It can be inferred that SSR was a higher effective marker than RAPD to assess genetic diversity in tomato accessions. Similarly, the genetic base of tomato varieties in Chinese market was narrow. It is suggested that wild tomato varieties should be used to enrich the genetic base of the cultivated tomato varieties.
基金sponsored by the National Millet Crops Research and Development System, China (CARS-0712.5-A9)the National Key Technology R&D Program of China, (2014BAD07B03)the National Natural Science Foundation of China (313 71529)
文摘Covered smut, which is caused by Ustilago hordei(Pers.) Lagerh., is one of the most damaging diseases of highland barley(Hordeum vulgare Linn. var. nudum Hook. f) in Tibetan areas of China. To understand the molecular diversity of U. hordei, a total of 27 isolates, which were collected from highland barley plants from Tibet, Sichuan, Qinghai, and Gansu provinces/autonomous region, were analyzed using random amplified polymorphic DNA(RAPD) and simple sequence repeat(SSR) markers. Among the 100 RAPD primers used, 24 primers exhibited polymorphism. A total of 111 fragments were amplified, of which 103 were polymorphic with a polymorphic rate of 92.79%. The average observed number of alleles(Na), effective number of alleles(Ne), Nei's genetic diversity(H), Shannon's information index(I) and polymorphism information content(PIC) value in the RAPD markers were 1.9279, 1.5016, 0.2974, 0.4503 and 0.6428, respectively. For the SSR markers, 40 of the 111 primer pairs exhibited polymorphism and provided a total of 119 bands, of which 109 were polymorphic and accounted for 91.60% of the total bands. The Na, Ne, H, I and PIC values of the SSR markers were 1.9160, 1.4639, 0.2757, 0.4211 and 0.4340, respectively. The similarity coefficients ranged from 0.4957 to 0.9261 with an average of 0.7028 among all the 27 isolates used. The dendrogram, which was developed based on the RAPD and SSR combined marker dataset showed that the 27 U. hordei isolates were divided into 3 clusters at similarity coefficient of 0.7314. We determined that RAPD and SSR markers can be successfully used to assess the genetic variation among U. hordei isolates. The RAPD markers revealed higher levels of genetic polymorphism than did the SSR markers in this study. There existed a moderate genetic difference among isolates. The molecular variation and differentiation was somewhat associated with geographical origin but not for all of the isolates.
基金Supported by Project of National Natural Science Foundation of China(31160292)Crop Discipline Construction Project of Tibet Agricultural and Animal Husbandry College(2015ZWXKJS&2016ZWXKJS)
文摘In recent years,with the continuous improvement and development of molecular technology in the application process,different types of DNA molecular markers have made rapid progress in the study of genetic diversity of rapeseed. The study of genetic diversity is conducive to the correct formulation of the strategy of collecting and in situ preservation of genetic resources of rapeseed,and it is the genetic basis for the improvement of rapeseed varieties. This article mainly starts with the three DNA molecular markers( SSR,RAPD,AFLP) widely used in the study of genetic diversity of rapeseed. By introducing the application principles and characteristics of SSR,RFPD and AFLP molecular markers,research progress of these three marker technologies in genetic diversity of rapeseed is briefly described.
文摘To investigate the genetic diversity and relationships among the sweet sorghum varieties as energy sources currently bred in China, 13 sweet sorghum varieties were selected for comprehensive analysis through observations of 31 biological traits and examinations of RAPD and SSR molecular markers. The numerical analysis showed that the differences in biological traits existed among 13 varieties, and the genetic distance (DIST) ranged from 0.787 to 2.221, and the two varieties from Inner Mongolia and Xinjiang were distinctly separated from all other varieties. A total of 22 polymorphism primers were obtained from the screening using RAPD marker analysis. The polymorphism rate was 58.33%, and the genetic similarity (GS) coefficients among the studied cultivars ranged from 0.694 to 0.896. Cluster analysis results indicated that the three varieties from Inner Mongolia, Xinjiang and Heilongjiang exhibited significant genetic differences from the other varieties. SSR marker analysis using 31 selected pairs of polymorphic primers showed that the polymorphism rate of amplified fragments was 78.64%, and GS coefficients among the tested cultivars were 0.534 to 0.971. Cluster analysis showed that variety No. 12 from Xinjiang and variety No. 7 from Inner Mongolia clustered into one group, and variety No. 6 from Heilongjiang was in a single group. The other ten varieties were grouped into another separate cluster. The results based on combined data displayed a similar trend with results from the three individual data analyses, but could more comprehensively and objectively reflect the fundamental genetic differences among these varieties. In summary, certain genetic differences exist among the varieties tested from different regions or different breeding institutions. However, varieties from the same region, especially those from the same breeding institution, exhibited small genetic variations and high genetic similarities. At present, more attention should be paid to discovery and innovation in the breeding of sweet sorghum varieties.