The boundary identification and quantitative thickness prediction of channel sand bodies are always difficult in seismic exploration.We present a new method for boundary identification and quantitative thickness predi...The boundary identification and quantitative thickness prediction of channel sand bodies are always difficult in seismic exploration.We present a new method for boundary identification and quantitative thickness prediction of channel sand bodies based on seismic peak attributes in the frequency domain.Using seismic forward modeling of a typical thin channel sand body,a new seismic attribute-the ratio of peak frequency to amplitude was constructed.Theoretical study demonstrated that seismic peak frequency is sensitive to the thickness of the channel sand bodies,while the amplitude attribute is sensitive to the strata lithology.The ratio of the two attributes can highlight the boundaries of the channel sand body.Moreover,the thickness of the thin channel sand bodies can be determined using the relationship between seismic peak frequency and thin layer thickness.Practical applications have demonstrated that the seismic peak frequency attribute can depict the horizontal distribution characteristics of channels very well.The ratio of peak frequency to amplitude attribute can improve the identification ability of channel sand body boundaries.Quantitative prediction and boundary identification of channel sand bodies with seismic peak attributes in the frequency domain are feasible.展开更多
Deep-water turbidite channels have attracted much attention as a focused issue in petroleum exploration and development. Extensive studies have been performed on the architecture of turbidite channels, and most resear...Deep-water turbidite channels have attracted much attention as a focused issue in petroleum exploration and development. Extensive studies have been performed on the architecture of turbidite channels, and most researches have focused on their geometric shapes, sedimentary processes and controlling factors. However, little attention has been paid to the distribution patterns, distribution laws and quantitative studies of composite sand bodies of turbidite channels. Taken one slope area of the Niger Delta Basin as an example, this study conducted a semi-quantitative to quantitative analysis on architecture of composite sand bodies of turbidite channels based on cores, well logging and seismic surveys. It is shown that turbidite channel systems can be classified as confined and unconfined channel systems. For confined channel systems, the vertical evolution process involves four stages. The sinuosity of a channel system is controlled by slope, with a negative power function relationship between them. When slope gradient reaches four degrees, the channel system is nearly straight. Based on the migration direction and migration amount of single channels within channel complexes, channel composite patterns can be divided into four classes(the lateral composite, en-echelon composite, swing composite and vertical composite) and several subclasses. Various channel composite patterns show specific distribution laws spatially. For meandering channel complexes at the middle-late evolution stage of confined channel systems, the lateral migration amongst single channels shows the features of integrity and succession. The sinuosity of single channels in the late period is greater than that in the early period, and cut-offs may occur locally when the sinuosity is larger than five degrees. This study provides a better understanding for the geological theory of deep-water sedimentary, and also improves exploitation benefits of this type of reservoirs.展开更多
Recently, we found that side lobes of wavelets have a large impact on the identification of thin sand reservoirs when studying some gas fields in a basin in Northwest China. Reflections from the top of the H Formation...Recently, we found that side lobes of wavelets have a large impact on the identification of thin sand reservoirs when studying some gas fields in a basin in Northwest China. Reflections from the top of the H Formation, in which there are gas-bearing thin sand bodies, have the main wavelet lobe between two weak peak side lobes. The lower one always mixes with another peak reflected from the top of a thin sand reservoir. That makes it difficult to identify the sand reservoir. In order to solve this, many forward models were set up using typical well logs. 2D synthetic profiles were produced using Ricker wavelets to study the relationships between the effects of wavelet side lobes and thin sand position and frequency and between amplitude and the thin sand body. We developed the following conclusions: First, it is easier to identify thin sands in a shallower position. Second, a good way to tell sand body reflections from side lobes is by comparing profiles with different frequency windows. Third, it is helpful and effective to describe sand extent using amplitude attributes.展开更多
In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential ro...In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential role in areas of sparse well coverage.We describe sedimentary facies characteristics,sand body planforms,width and connectivity patterns of sand bodies,and vertical associations and successions by acoustic impedance inversion technology and sedimentological theory.Results of our study show braided fluvial strata deposits in the Jurassic Badaowan formation.Each sand body is approximately lenticular in shape.The width of each sand body falls in the range 100~800 m,with most between 200 and 400 m.The sand bodies vary in thickness from 4 to 13 m,with most below 9 m.The width/thickness ratios lie in the range 20~55.The connectivity of braided fluvial channel sand bodies is controlled by changes of accommodation space.One fining-upward sedimentary cycle of base-level rise is recognized in Badaowan formation,representing an upward rise of base level.The connectivity of sand bodies was found to be greatest in the early stage of base-level rise,becoming progressively worse with increasing base-level rise.展开更多
Results of long-term explorations in the Kongqueting region,located in an East China Sea depression,suggest that the strong fault activity during the sedimentary period of the Pinghu formation significantly influenced...Results of long-term explorations in the Kongqueting region,located in an East China Sea depression,suggest that the strong fault activity during the sedimentary period of the Pinghu formation significantly influenced the development of the sedimentary system.However,the aggregation and enrichment of the sand body under a tectonic background has become a problem that requires an immediate solution.Considering research outcomes of previous studies,this study used three-dimensional seismic and logging data to identify Y-or H-type and the en echelon distribution patterns of the fault plane,as well as identify the locations wherein the fault growth index value is greater than 1 in the study region,indicating the tectonic background of the fault transfer zone in the region.Second,the development type of the fault transfer zone was studied,and the sand body enrichment site was identified based on seismic inversion data and the development position of the fault transfer point.This helps clarify the evolution of sedimentary facies of the Pinghu formation combined with the sedimentary environment of the braided-river delta.Finally,after summarizing the coupling relationship between the synsedimentary fault systems and the sand body enrichment patterns,three sand-control models were determined,namely,the flexural-parallel,the en echelon collinear,and the torsional-reformed superimposed transfer zones.The findings of this study lay a foundation for the subsequent search of tectonic lithologic oil and gas reservoirs.展开更多
Based on the cores from 47 wells and logging data of 130 wells,the main types of sand bodies in the shallow water delta of the Chang 8_(2) sub-member in the Triassic Yanchang Formation,Longdong Area,Ordos Basin were c...Based on the cores from 47 wells and logging data of 130 wells,the main types of sand bodies in the shallow water delta of the Chang 8_(2) sub-member in the Triassic Yanchang Formation,Longdong Area,Ordos Basin were comprehensively analyzed,the distribution characteristics of sand bodies more than 20 m thick were identified,and the genetic types of the thick sand bodies were sorted out.In this region,thick-bed sand bodies can be divided into two types according to the shape and position:type 1 is the sand body in wide strip and is distributed between the average high water mark and the average low water mark;type 2 is distributed on both sides of the average low water mark and is in irregular lump shape.Based on the principle of the volume distribution of sediments and the change rule of accommodation space,the genetic models of two types of thick-bed sand bodies in the Chang 8_(2) sub-member are superimposed distributary channel sand bodies in high accommodation space and superimposed composite sand bodies in low accommodation space.展开更多
Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment ...Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment and tractive current effects that lead to the development of mouth bar, distal bar, sheet sand and other sand bodies of subaerial and subaqueous distributary channel,natural levee, flood fan and delta front, and shore-shallow lake environment and lake flow transformation effects that result in the development of sandy beach bar, sheet sand and other sand bodies. Chang 9 sand body mainly developed five basic vertical structures, namely box shape, campaniform, infundibuliform, finger and dentoid. The vertical stacking patterns of multilayer sand body was complex, and the common shapes included box shape + box shape, campaniform + campaniform, campaniform + box shape, infundibuliform + infundibuliform, campaniform + infundibuliform, box shape + campaniform, box shape + infundibuliform,and finger + finger. Based on the analysis on major dominating factors of vertical structure of sand body, sedimentary environment,sedimentary facies and rise, fall and cycle of base level are identified as the major geological factors that control the vertical structure of single sand body as well as vertical stacking patterns and distribution of multistory sand bodies.展开更多
基金supported by National Key Science and Technology Special Projects (Grant No.2008ZX05000-004)CNPC Key S and T Special Projects (Grant No.2008E-0610-10)
文摘The boundary identification and quantitative thickness prediction of channel sand bodies are always difficult in seismic exploration.We present a new method for boundary identification and quantitative thickness prediction of channel sand bodies based on seismic peak attributes in the frequency domain.Using seismic forward modeling of a typical thin channel sand body,a new seismic attribute-the ratio of peak frequency to amplitude was constructed.Theoretical study demonstrated that seismic peak frequency is sensitive to the thickness of the channel sand bodies,while the amplitude attribute is sensitive to the strata lithology.The ratio of the two attributes can highlight the boundaries of the channel sand body.Moreover,the thickness of the thin channel sand bodies can be determined using the relationship between seismic peak frequency and thin layer thickness.Practical applications have demonstrated that the seismic peak frequency attribute can depict the horizontal distribution characteristics of channels very well.The ratio of peak frequency to amplitude attribute can improve the identification ability of channel sand body boundaries.Quantitative prediction and boundary identification of channel sand bodies with seismic peak attributes in the frequency domain are feasible.
基金granted by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No.2011ZX05030-005 and No.2011ZX05009-003)the National Natural Science Foundation of China (Grant No. 40902035)
文摘Deep-water turbidite channels have attracted much attention as a focused issue in petroleum exploration and development. Extensive studies have been performed on the architecture of turbidite channels, and most researches have focused on their geometric shapes, sedimentary processes and controlling factors. However, little attention has been paid to the distribution patterns, distribution laws and quantitative studies of composite sand bodies of turbidite channels. Taken one slope area of the Niger Delta Basin as an example, this study conducted a semi-quantitative to quantitative analysis on architecture of composite sand bodies of turbidite channels based on cores, well logging and seismic surveys. It is shown that turbidite channel systems can be classified as confined and unconfined channel systems. For confined channel systems, the vertical evolution process involves four stages. The sinuosity of a channel system is controlled by slope, with a negative power function relationship between them. When slope gradient reaches four degrees, the channel system is nearly straight. Based on the migration direction and migration amount of single channels within channel complexes, channel composite patterns can be divided into four classes(the lateral composite, en-echelon composite, swing composite and vertical composite) and several subclasses. Various channel composite patterns show specific distribution laws spatially. For meandering channel complexes at the middle-late evolution stage of confined channel systems, the lateral migration amongst single channels shows the features of integrity and succession. The sinuosity of single channels in the late period is greater than that in the early period, and cut-offs may occur locally when the sinuosity is larger than five degrees. This study provides a better understanding for the geological theory of deep-water sedimentary, and also improves exploitation benefits of this type of reservoirs.
文摘Recently, we found that side lobes of wavelets have a large impact on the identification of thin sand reservoirs when studying some gas fields in a basin in Northwest China. Reflections from the top of the H Formation, in which there are gas-bearing thin sand bodies, have the main wavelet lobe between two weak peak side lobes. The lower one always mixes with another peak reflected from the top of a thin sand reservoir. That makes it difficult to identify the sand reservoir. In order to solve this, many forward models were set up using typical well logs. 2D synthetic profiles were produced using Ricker wavelets to study the relationships between the effects of wavelet side lobes and thin sand position and frequency and between amplitude and the thin sand body. We developed the following conclusions: First, it is easier to identify thin sands in a shallower position. Second, a good way to tell sand body reflections from side lobes is by comparing profiles with different frequency windows. Third, it is helpful and effective to describe sand extent using amplitude attributes.
基金Financial support for this work,provided by the National Basic Research Program of China(No.2006 CB202300),
文摘In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential role in areas of sparse well coverage.We describe sedimentary facies characteristics,sand body planforms,width and connectivity patterns of sand bodies,and vertical associations and successions by acoustic impedance inversion technology and sedimentological theory.Results of our study show braided fluvial strata deposits in the Jurassic Badaowan formation.Each sand body is approximately lenticular in shape.The width of each sand body falls in the range 100~800 m,with most between 200 and 400 m.The sand bodies vary in thickness from 4 to 13 m,with most below 9 m.The width/thickness ratios lie in the range 20~55.The connectivity of braided fluvial channel sand bodies is controlled by changes of accommodation space.One fining-upward sedimentary cycle of base-level rise is recognized in Badaowan formation,representing an upward rise of base level.The connectivity of sand bodies was found to be greatest in the early stage of base-level rise,becoming progressively worse with increasing base-level rise.
基金This work was supported by the National Science and Technology Major Project of China(No.2016ZX05027002-009)the Science and Technology Project of the CNOOC,known as the‘Research on Key Technologies of Exploration and Development in Western Xihu Sag’(No.CNOOC-KJ 135 ZDXM 39 SH01).
文摘Results of long-term explorations in the Kongqueting region,located in an East China Sea depression,suggest that the strong fault activity during the sedimentary period of the Pinghu formation significantly influenced the development of the sedimentary system.However,the aggregation and enrichment of the sand body under a tectonic background has become a problem that requires an immediate solution.Considering research outcomes of previous studies,this study used three-dimensional seismic and logging data to identify Y-or H-type and the en echelon distribution patterns of the fault plane,as well as identify the locations wherein the fault growth index value is greater than 1 in the study region,indicating the tectonic background of the fault transfer zone in the region.Second,the development type of the fault transfer zone was studied,and the sand body enrichment site was identified based on seismic inversion data and the development position of the fault transfer point.This helps clarify the evolution of sedimentary facies of the Pinghu formation combined with the sedimentary environment of the braided-river delta.Finally,after summarizing the coupling relationship between the synsedimentary fault systems and the sand body enrichment patterns,three sand-control models were determined,namely,the flexural-parallel,the en echelon collinear,and the torsional-reformed superimposed transfer zones.The findings of this study lay a foundation for the subsequent search of tectonic lithologic oil and gas reservoirs.
基金Supported by the National Basic Research Program of China (973 Program)(2014CB239000)China Petroleum Scientific Research and Technology Development Project (YJXK2019-16)。
文摘Based on the cores from 47 wells and logging data of 130 wells,the main types of sand bodies in the shallow water delta of the Chang 8_(2) sub-member in the Triassic Yanchang Formation,Longdong Area,Ordos Basin were comprehensively analyzed,the distribution characteristics of sand bodies more than 20 m thick were identified,and the genetic types of the thick sand bodies were sorted out.In this region,thick-bed sand bodies can be divided into two types according to the shape and position:type 1 is the sand body in wide strip and is distributed between the average high water mark and the average low water mark;type 2 is distributed on both sides of the average low water mark and is in irregular lump shape.Based on the principle of the volume distribution of sediments and the change rule of accommodation space,the genetic models of two types of thick-bed sand bodies in the Chang 8_(2) sub-member are superimposed distributary channel sand bodies in high accommodation space and superimposed composite sand bodies in low accommodation space.
基金Project(2011D-5006-0105)supported by the Technology Innovation Foundation of CNPC,ChinaProject(SZD0414)supported by the Key Discipline of Mineral Prospecting and Exploration of Sichuan Province,China
文摘Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment and tractive current effects that lead to the development of mouth bar, distal bar, sheet sand and other sand bodies of subaerial and subaqueous distributary channel,natural levee, flood fan and delta front, and shore-shallow lake environment and lake flow transformation effects that result in the development of sandy beach bar, sheet sand and other sand bodies. Chang 9 sand body mainly developed five basic vertical structures, namely box shape, campaniform, infundibuliform, finger and dentoid. The vertical stacking patterns of multilayer sand body was complex, and the common shapes included box shape + box shape, campaniform + campaniform, campaniform + box shape, infundibuliform + infundibuliform, campaniform + infundibuliform, box shape + campaniform, box shape + infundibuliform,and finger + finger. Based on the analysis on major dominating factors of vertical structure of sand body, sedimentary environment,sedimentary facies and rise, fall and cycle of base level are identified as the major geological factors that control the vertical structure of single sand body as well as vertical stacking patterns and distribution of multistory sand bodies.