期刊文献+
共找到719篇文章
< 1 2 36 >
每页显示 20 50 100
Tool Condition Monitoring Based on Nonlinear Output Frequency Response Functions and Multivariate Control Chart
1
作者 Yufei Gui Ziqiang Lang +1 位作者 Zepeng Liu Hatim Laalej 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第4期243-251,共9页
Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significa... Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications. 展开更多
关键词 intelligent manufacturing multivariate control chart Nonlinear Autoregressive with eXogenous Input modelling Nonlinear Output Frequency Response Functions tool condition monitoring
下载PDF
AN INTELLIGENT TOOL CONDITION MONITORING SYSTEM USING FUZZY NEURAL NETWORKS 被引量:3
2
作者 赵东标 KeshengWang OliverKrimmel 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期169-175,共7页
Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificia... Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificial neural networks (ANNs) are used for this purpose in conjunction with suitable sensory systems. The present work in Norwegian University of Science and Technology (NTNU) uses back propagation neural networks (BP) and fuzzy neural networks (FNN) to process the cutting tool state data measured with force and acoustic emission (AE) sensors, and implements a valuable on line tool condition monitoring system using the ANNs. Different ANN structures are designed and investigated to estimate the tool wear state based on the fusion of acoustic emission and force signals. Finally, four case studies are introduced for the sensing and ANN processing of the tool wear states and the failures of the tool with practical experiment examples. The results indicate that a tool wear identification system can be achieved using the sensors integration with ANNs, and that ANNs provide a very effective method of implementing sensor integration for on line monitoring of tool wear states and abnormalities. 展开更多
关键词 tool condition monitoring neural networks fuzzy logic acoustic emission force sensor fuzzy neural networks
下载PDF
Method of Monitoring Wearing and Breakage States of Cutting Tools Based on Mahalanobis Distance Features 被引量:1
3
作者 JI Shi-ming, ZHANG Lin-bin, YUAN Ju-long, WAN Yue-hua, ZHANG Xian, ZHANG Li, BAO Guan-jun (Institute of Mechatronics Engineering, Zhejiang University of Technology, Hangzhou 310032, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期25-26,共2页
The Mahalanobis distance features proposed by P.C.Mahalanobis, an Indian statistician, can be used in an automatic on-line cutting tool condition monitoring process based on digital image processing. In this paper, a ... The Mahalanobis distance features proposed by P.C.Mahalanobis, an Indian statistician, can be used in an automatic on-line cutting tool condition monitoring process based on digital image processing. In this paper, a new method of obtaining Mahalanobis distance features from a tool image is proposed. The key of calculating Mahalanobis distance is appropriately dividing the object into several component sets. Firstly, a technique is proposed that can automatically divide the component groups for calculating Mahalanobis distance based on the gray level of wearing or breakage regions in a tool image. The wearing region can be divided into high gray level component group and the tool-blade into low one. Then, the relation between Mahalanobis distance features of component groups and tool conditions is investigated. The results indicate that the high brightness region on the flank surface of the turning tool will change with its abrasion change and if the tool is heavily abraded, the area of high brightness will increase apparently. The Mahalanobis distance features of high gray level component group are related with wearing state of tool and low gray level component group correlated with breakage of tool. The experimental results show that the abrasion of the tool’s flank surface affected the Mahalanobis distances of high brightness component of the tool and the pixels of high brightness component set. Compared with the changes of them, we found that the Mahalanobis distance of high brightness component of the tool was more sensitive to the abrasion of cutting tool than the area of high brightness component set of the tool. Here we found that the relative changing rate of the area of high brightness component set was not quite obvious and it was ranging from 2% to 15%, while the relative changing rate of the Mahalanobis distance in table 1 ranges from 13.9% to 47%. It is 3 times higher than the changing rate of the area. 展开更多
关键词 mahalanobis distance tool condition monitoring image processing
下载PDF
Controlling Scale Sensor Networks Data Quality in the Ganglia Grid Monitoring Tool 被引量:2
4
作者 Adel Nadhem Naeem Sureswaran Ramadass Chan Huah Yong 《通讯和计算机(中英文版)》 2010年第11期18-26,共9页
关键词 网格计算系统 传感器网络 监控工具 神经节 数据质量 规模控制 数据包丢失 WEB界面
下载PDF
BP-Neural-Network-Based Tool Wear Monitoring by Using Wav elet Decomposition of the Power Spectrum 被引量:1
5
作者 ZHENGJian-ming XIChang-qing +1 位作者 LIYan XIAOJi-ming 《International Journal of Plant Engineering and Management》 2004年第4期198-204,共7页
In a drilling process, the power spectrum of the drilling force is related tothe tool wear and is widely applied in the monitoring of tool wear. But the feature extraction andidentification of the power spectrum have ... In a drilling process, the power spectrum of the drilling force is related tothe tool wear and is widely applied in the monitoring of tool wear. But the feature extraction andidentification of the power spectrum have always been an unresolved difficult problem. This papersolves it through decomposition of the power spectrum in multilayers using wavelet transform andextraction of the low frequency decomposition coefficient as the envelope information of the powerspectrum. Intelligent identification of the tool wear status is achieved in the drilling processthrough fusing the wavelet decomposition coefficient of the power spectrum by using a BP (BackPropagation) neural network. The experimental results show that the features of the power spectrumcan be extracted efficiently through this method, and the trained neural networks show highidentification precision and the ability of extension. 展开更多
关键词 tool wear monitoring power spectrum wavelet transform BP neural network
下载PDF
On-line Tool Condition Monitoring with Improved Fuzzy Neural Network
6
作者 李小俚 《High Technology Letters》 EI CAS 1997年第1期30-33,共4页
This paper presents an investigation of tool condition monitoring based on fuzzy neural network for drilling. In this study, five monitoring feature parameters, which will be used to monitor tool condition, are select... This paper presents an investigation of tool condition monitoring based on fuzzy neural network for drilling. In this study, five monitoring feature parameters, which will be used to monitor tool condition, are selected by means of vibration signal spectral analysis. In order to meet the need of the system real time, this paper presents a neural network with fuzzy inference. Fuzzy neural network requires less computation than backpropagation neural network, and can easily describe the relationship between the tool conditions and the monitoring indices. The experimental results indicate that the use of vibration signal for on--line drilling condition monitoring is feasible. 展开更多
关键词 tool condition monitoring DRILLING Fuzzy neural network
下载PDF
In-process tool wear monitoring using laser-CCD
7
作者 李旦 陈明君 杨剑明 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1999年第3期37-39,共3页
A simple and reliabe monitoring method based on laser-CCD trigonometric measurement is Proposed for toolwear sensing in the automation of manufacturing processes, and experimental results show this method is good for ... A simple and reliabe monitoring method based on laser-CCD trigonometric measurement is Proposed for toolwear sensing in the automation of manufacturing processes, and experimental results show this method is good for in-dustrial use. 展开更多
关键词 tool WEAR monitorING LASER CCD
下载PDF
A Fuzzy Neural Network for Drilling Tool Condition Monitoring
8
作者 李小俚 姚英学 +1 位作者 李晓钧 袁哲俊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1999年第2期88-90,共3页
This paper presents a fuzzy neural network used for monitoring breakage and wear of tools by vibration sig-nal. Which describes the relationship betwee too conditons and the monitoring indices and expermental results ... This paper presents a fuzzy neural network used for monitoring breakage and wear of tools by vibration sig-nal. Which describes the relationship betwee too conditons and the monitoring indices and expermental results indi-cate it is feasible to vibration signal for on-line drilling condition monitoring. 展开更多
关键词 tool CONDITION monitoring VIBRATION SIGNAL FUZZY NEURAL network
下载PDF
A Modification of SOM Network(SLFM) and Its Applications in Tool Wear Monitoring and Quality Control
9
作者 Zhu Mingquan Cai YongxiaDepartment of Aeronautic Manufacturing Engineering Northwestern Polytechnical University Xi’an 710072, P.R. China 《International Journal of Plant Engineering and Management》 1997年第2期6-11,共6页
In this paper, a Supervised Linear Feature Mapping(SLFM) algorithm, as a modification of the Kohonen Self Organizing Mapping (SOM),is proposed. The applications in cutting tool wear estimation and quality control and... In this paper, a Supervised Linear Feature Mapping(SLFM) algorithm, as a modification of the Kohonen Self Organizing Mapping (SOM),is proposed. The applications in cutting tool wear estimation and quality control and the comparison with a back propagation (BP) algorithm are discussed. The results show that the SLFM algorithm requires less training time and has higher accuracy compared with the BP algorithm. It might be a great potential approach to integrate multi sensor information in process control. 展开更多
关键词 artificial neural network tool wear monitoring quality control
下载PDF
Tool Wear Monitoring in Drilling Using Multiple Feature Fusion of the Cutting Force
10
作者 ZHENG Jian-ming, LI Yan, HUANG Yu-mei, LI Shu-juan, XIAO Ji-ming, YUAN Qi-long Institute of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, P. R. China 《International Journal of Plant Engineering and Management》 2001年第1期33-40,共8页
This paper presents a tool wear monitoring method in drilling process using cutting force signal. The kurtosis coefficient and the energy of a special frequency band of cutting force signals were taken as the signal f... This paper presents a tool wear monitoring method in drilling process using cutting force signal. The kurtosis coefficient and the energy of a special frequency band of cutting force signals were taken as the signal features of tool wear as well as the mean value and the standard deviation from the time and frequency domain. The relationships between the signal feature and tool wear were discussed; then the vectors constituted of the signal features were input to the artificial neural network for fusion in order to realize intelligent identification of tool wear. The experimental results show that the artificial neural network can realize fusion of multiple features effectively, but the identification precision and the extending ability are not ideal owing to the relationship between the features and the tool wear being fuzzy and not certain. 展开更多
关键词 tool wear monitoring multiple feature fusion neural network
下载PDF
Real-Time Data and Visualization Monitoring of Computer Numerical Control Machine Tools Based on Hyper Text Markup Language 5
11
作者 WU Yan XIAO Lijun +2 位作者 DING Xiaoying WANG Bing ZHANG Jieren 《Journal of Donghua University(English Edition)》 EI CAS 2019年第3期261-266,共6页
In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML... In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML)5 is proposed.The characteristics of the real-time monitoring technology of CNC machine tools under the traditional Client/Server(C/S)structure are compared and analyzed,and the technical drawbacks are proposed.Web real-time communication technology and browser drawing technology are deeply studied.A real-time monitoring and visible system for CNC machine tool data is developed based on Metro platform,combining WebSocket real-time communication technology and Canvas drawing technology.The system architecture is given,and the functions and implementation methods of the system are described in detail.The practical application results show that the WebSocket real-time communication technology can effectively reduce the bandwidth and network delay and save server resources.The numerical control machine data monitoring system can intuitively reflect the machine data,and the visible effect is good.It realizes timely monitoring of equipment alarms and prompts maintenance and management personnel. 展开更多
关键词 computer numerical control(CNC) machine tools real-time monitorING VISUALIZATION hyper text MARKUP language(HTML)5 WebSocket CANVAS
下载PDF
刀具磨损状态的多步向前智能预测
12
作者 朱锟鹏 黄称意 李俊 《计算机集成制造系统》 EI CSCD 北大核心 2024年第9期3038-3049,共12页
刀具状态的准确监测对于提高切削加工质量和加工效率至关重要。在当前广泛用于刀具磨损状态监测的间接法中,多以单步或短期预测为主,没有实现多步预测,且累积误差较大。高斯过程是间接法中应用较多的一种机器学习方法,然而传统的高斯过... 刀具状态的准确监测对于提高切削加工质量和加工效率至关重要。在当前广泛用于刀具磨损状态监测的间接法中,多以单步或短期预测为主,没有实现多步预测,且累积误差较大。高斯过程是间接法中应用较多的一种机器学习方法,然而传统的高斯过程回归由于模型结构和算法的限制,对刀具磨损预测的精度不高。针对上述不足,提出了改进的自回归递归高斯过程模型对刀具磨损进行多步预测。为了减小预测累积误差,在模型训练中应用了改进的模型更新方式、组合核函数,对样本设置了遗忘因子,在预测中加入了偏差校正方法。研究了各个改进因素对模型的影响并综合所有有利因素,实现了较准确的刀具磨损状态多步预测,在3个测试集上预测误差分别降低了85.68%,20.67%和63.32%。 展开更多
关键词 刀具状态监测 多步预测 高斯过程 递归
下载PDF
Design and Implementation of GUSNI 1.1: VI Tool for WSN Data Monitoring Applications
13
作者 Roop Pahuja Harish Kumar Verma Moin Uddin 《通讯和计算机(中英文版)》 2011年第7期550-559,共10页
关键词 应用工具 审美设计 WSN 数据监控 VI 网络数据包 状态监测 ZIGBEE
下载PDF
实施国家义务教育英语学习质量监测,促进英语教育高质量发展
14
作者 温红博 王静 《语言测试与评价》 2024年第1期49-56,113,114,共10页
2021年,教育部印发《国家义务教育质量监测方案(2021年修订版)》,首次将英语学科纳入监测范围。2022年5月,教育部基础教育质量监测中心第一次在全国范围内实施了国家义务教育英语学习质量监测。通过本轮监测,监测中心客观掌握国家义务... 2021年,教育部印发《国家义务教育质量监测方案(2021年修订版)》,首次将英语学科纳入监测范围。2022年5月,教育部基础教育质量监测中心第一次在全国范围内实施了国家义务教育英语学习质量监测。通过本轮监测,监测中心客观掌握国家义务教育英语学习质量总体水平,全面了解影响英语教育质量的主要因素,进而推动英语教学改革,提高英语学习效率。未来,英语监测将在诊断教育问题、引领教育改革方面发挥重要作用,助力国家义务教育高质量发展。本文将从英语监测启动的意义、高质量英语监测的特征以及英语监测如何推动教育质量发展等方面,系统介绍国家义务教育英语学习质量监测。 展开更多
关键词 国家义务教育英语学习质量监测 监测标准与工具 监测数据采集与分析 监测结果应用
下载PDF
多传感器信息融合的刀具磨损状态智能监测系统
15
作者 孙巍伟 黄民 +1 位作者 何一千 郭中原 《机床与液压》 北大核心 2024年第17期222-228,共7页
为了提高数控机床刀具磨损状态智能监测的可靠性,提出一种基于多传感器信息融合的刀具磨损状态智能监测方法及系统。利用多种传感器分别采集刀具加工过程中的机床变频器输入电流信号、工件三向振动信号和声信号,然后对采集到的信号进行... 为了提高数控机床刀具磨损状态智能监测的可靠性,提出一种基于多传感器信息融合的刀具磨损状态智能监测方法及系统。利用多种传感器分别采集刀具加工过程中的机床变频器输入电流信号、工件三向振动信号和声信号,然后对采集到的信号进行时域、频域和时频域处理分析。系统自动识别提取出其中与刀具磨损程度相关性较高的敏感特征变量,并利用马氏距离法对敏感特征向量进行分析计算,确定刀具不同状态下的阈值,并据此判断刀具的磨损状态。最后基于上述原理利用QT开发平台研发一套完整的数控机床刀具磨损状态智能监测系统。试验结果表明,该系统能够实时准确地监测出刀具的磨损状态。 展开更多
关键词 刀具磨损 特征提取 状态监测 多传感器融合
下载PDF
基于累加式实时串并联变换算法的机械故障声学监测方法
16
作者 祝洲杰 杨金林 毛鹏峰 《机电工程》 CAS 北大核心 2024年第2期364-370,共7页
针对基于物联网(IoT)的冲压机床故障监测问题,为了降低冲压机床故障监测的计算复杂度,并提高其低频识别的精度,提出了一种无需机器学习技术的实时性机械故障声学监测方法,即基于累加式实时串并联变换算法的机械故障声学监测方法。首先,... 针对基于物联网(IoT)的冲压机床故障监测问题,为了降低冲压机床故障监测的计算复杂度,并提高其低频识别的精度,提出了一种无需机器学习技术的实时性机械故障声学监测方法,即基于累加式实时串并联变换算法的机械故障声学监测方法。首先,研究了物联网场景中冲压机床声学低频分析的必要性,并给出了声学信号的表达式;然后,针对频率轴上多个周期信号重叠导致参数估计较为困难的问题,提出了一种累加式实时串并联变换算法,将输入的采样序列馈入多个具有不同输出端口的串并转换器,从累加的波形中检测出最大绝对值,并进行了比较;最后,通过样本时隙划分,将累加式实时串并联变换算法应用于机械故障监测;通过仿真和冲压机床实机测试,对累加式实时串并联变换算法和实时性机械故障声学监测方法的有效性进行了验证。研究结果表明:在无需大量信号样本的情况下,使用累加式实时串并联变换算法有利于提高低频带的识别精度;在直方图相关性方面,累加式实时串并联变换算法和Morlet小波变换具有相同的性能,且均明显优于短时傅立叶变换;同时,尽管累加式实时串并联变换算法需要的加法总数比Morlet小波变换多2.5倍,但是乘法总数减少了20447%,大幅减少了计算的复杂度。 展开更多
关键词 机械故障监测 冲压机床 累加式实时串并联变换算法 串并转换器 低频识别精度 计算复杂度
下载PDF
APPLICATION OF ACOUSTIC EMISSION SENSOR IN DETECTING TOOL BREAKAGE IN MICRO-MILLING 被引量:5
17
作者 李亮 包杰 +1 位作者 何宁 于强 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第2期119-124,共6页
Acoustic emission (AE) sensors are used to monitor tool conditions in micro-milling operations. Together with the microphone, the AE sensor can detect the tool breakage more accurately and more effectively by applyi... Acoustic emission (AE) sensors are used to monitor tool conditions in micro-milling operations. Together with the microphone, the AE sensor can detect the tool breakage more accurately and more effectively by applying the wavelet analysis. The processed tool breakage technique by AE sensor is used to perform the wavelet analysis on the experimental data. Results indicate the feasibility of using the AE signals for monitoring the tool condition in micro-milling. 展开更多
关键词 acoustic emissions MICRO-MACHINING tool condition monitoring wavelet analysis
下载PDF
智能刀具设计及关键技术研究进展
18
作者 马尊严 岳彩旭 +2 位作者 周天祥 胡德生 刘献礼 《航空制造技术》 CSCD 北大核心 2024年第7期96-111,共16页
随着“工业4.0”及“中国制造2025”战略计划的兴起,制造业中的智能制造及自动化水平不断提升,刀具作为生产过程中的重要一环,也变得更加精密化和智能化。智能刀具是实现智能制造和自动化生产的重要环节和必要保障,本文围绕智能刀具的... 随着“工业4.0”及“中国制造2025”战略计划的兴起,制造业中的智能制造及自动化水平不断提升,刀具作为生产过程中的重要一环,也变得更加精密化和智能化。智能刀具是实现智能制造和自动化生产的重要环节和必要保障,本文围绕智能刀具的最新研究进展进行了详细论述,包括智能刀具设计、智能刀具关键技术、数字孪生技术及智能刀具系统等方面内容。归纳了国内外学者们在智能刀具集成优化与结构设计、智能刀具监测和调控技术、基于刀具管控和推荐的智能刀具系统的研究成果,简述了数字孪生技术在智能刀具领域中的应用,并指出了智能刀具目前存在的不足及未来发展方向。 展开更多
关键词 智能刀具 状态监测 智能调控 刀具管控 数字孪生
下载PDF
基于改进信息熵的直接刀具状态监测设备部署
19
作者 由智超 高宏力 +2 位作者 郭亮 陈昱呈 刘岳开 《西南交通大学学报》 EI CSCD 北大核心 2024年第1期160-167,共8页
在不拆刀情况下,基于机器视觉的在线刀具状态监测系统可完成刀具磨损测量和状态评估,但与在线捕获刀具图像质量息息相关的系统部署参数选择却鲜有研究.为解决上述问题,本文构建基于改进信息熵的多项式回归模型以实现刀具状态监测系统的... 在不拆刀情况下,基于机器视觉的在线刀具状态监测系统可完成刀具磨损测量和状态评估,但与在线捕获刀具图像质量息息相关的系统部署参数选择却鲜有研究.为解决上述问题,本文构建基于改进信息熵的多项式回归模型以实现刀具状态监测系统的最优部署.首先,使用自适应阈值方法去除捕获刀具图像中背景要素干扰,并通过信息熵指标评估图像中刀具磨损区域的成像质量;然后,构建相机工作距离、曝光时间与所提出评价指标之间的多项式回归模型以描述部署参数与提出评价指标的映射关系;最后,应用最小二乘法求取多项式模型系数获得最优部署参数.在确保自变量的因子水平涵盖最优部署参数情况下设计正交实验,实验结果表明:提出的评价指标与工作距离、曝光时间等部署参数之间均存在主效应关系,符合光学成像系统的变化规律;与支持向量机、决策树和K近邻(K-nearest neighbor,KNN)算法等非线性回归预测模型相比,三次多项式回归模型预测误差最小,其平均绝对误差、均方误差、均方根误差分别为0.022631,0.00068,0.026069;在多项式回归模型求解的最优部署参数下,所捕获的刀具图像的测量精度达到96.76%,提高0.74%,满足刀具状态监测的精度要求. 展开更多
关键词 信息熵 方差分析 多项式回归 机器视觉 刀具状态监测
下载PDF
基于特征融合与域自适应的刀具磨损在线监测
20
作者 柳大虎 汪永超 何欢 《组合机床与自动化加工技术》 北大核心 2024年第8期121-126,133,共7页
机床状态监测对于机床健康管理以及保证工件加工质量具有重要意义。针对现有刀具磨损预测模型存在训练时间长、收敛速度慢以及泛化能力弱等问题,提出了一种分布式一维卷积神经网络对刀具磨损进行预测。采用残差连接与通道注意力模块顺... 机床状态监测对于机床健康管理以及保证工件加工质量具有重要意义。针对现有刀具磨损预测模型存在训练时间长、收敛速度慢以及泛化能力弱等问题,提出了一种分布式一维卷积神经网络对刀具磨损进行预测。采用残差连接与通道注意力模块顺序堆叠的方式作为特征提取模块,并通过交叉验证以选择合适的网络层数。由于不同传感器所提取到的特征信息可能存在冗余,使用权重差异策略以提高特征提取的有效性以及全面性。此外,考虑到训练集与测试集分布可能存在差异从而影响模型的泛化性能,引入了域自适应方法提高模型在未知数据集中的表现。为验证模型效果,使用PHM 2010铣刀磨损数据集进行实验。实验结果表明,该模型在C1、C4、C6三把刀具上的平均RMSE和平均MAE分别为6.97和6.29,与TCN、TDConvLSTM等模型相比有12%以上的提升。 展开更多
关键词 刀具磨损监测 多传感器特征融合 权重差异策略 域自适应
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部