Ogura cytoplasmic male sterility(Ogura CMS)is extensively applied in hybrid seed production in cruciferous crops.However,the posttranscriptional molecular basis of Ogura CMS in cruciferous crops remains elusive.Here,a...Ogura cytoplasmic male sterility(Ogura CMS)is extensively applied in hybrid seed production in cruciferous crops.However,the posttranscriptional molecular basis of Ogura CMS in cruciferous crops remains elusive.Here,a data-independent acquisition-based proteomic approach coupled with a parallel reaction monitoring-based targeted proteomic assay was used to analyze the proteome dynamics of Ogura CMS cabbage line RM and its maintainer line RF during floral bud development to obtain insights into the mechanism underlying Ogura CMS in cruciferous crops.A total of 9162 proteins corresponding to 61464 peptides were identified in RM and RF floral buds.The proteomic fluctuation of RM was weaker than that of RF.Differences in protein expression between RM and RF gradually enlarged with floral bud development.Fifteen continually up-regulated and eight continually down-regulated proteins were found in RM relative to RF throughout floral bud development.Differentially expressed proteins between RM and RF during floral bud development were implicated in the endoplasmic reticulum(ER)-associated protein processing pathway,in which most of them exhibited down-regulated expression in RM.These data suggest that ER-associated protein processing may be involved in pollen abortion in Ogura CMS cabbage by inhibiting the expression of critical factors.Our findings not only deepen the understanding of the molecular mechanisms of Ogura CMS in cruciferous crops but also provide better guidance for applying Ogura CMS in the hybrid breeding of cruciferous crops.展开更多
In the Sahelian zone in Africa, groundwater is the main source of drinking water for domestic, industrial, and agricultural uses. The groundwater of the Samba Dia sandy aquifer was assessed for understanding processes...In the Sahelian zone in Africa, groundwater is the main source of drinking water for domestic, industrial, and agricultural uses. The groundwater of the Samba Dia sandy aquifer was assessed for understanding processes controlling the hydrogeochemistry and its drinking and irrigation suitability, on the basis of various water quality parameters. For the present study, thirty-three groundwater samples were collected in wells of the study area during the dry season in March 2021 and subjected to analysis for chemical characteristics (major ions), pH, electrical conductivity (EC), and total dissolved solids (TDS). Gibbs plot depicts that the process of ionic exchange is mainly due to the dissolution of water-rock interaction. The Piper diagram indicates a largely dominant sodium chloride facies with 70% of the groundwater samples followed by calcium chloride facies (18%) than calcium bicarbonate facies (12%). Analytical results of hydrogeochemical parameters of groundwater samples reveal that the majority of samples are within the World Health Organization safety range for drinking water. TDS and electrical conductivity (EC) values of groundwater indicate that 70% and 61% are safe for drinking water, respectively. Sodium percentage (% Na), Sodium Adsorption Ratio (SAR) values, and Ca/Mg ratio were calculated and compared with the standard guideline values recommended by the World Health Organization and agricultural water standards. This study shows that the groundwater in the area is mostly chemically suitable for drinking and irrigation, although some wells at the edge of the area exhibit signs of progressive salinization and traces of pollution.展开更多
Light regulates important metabolic processes in microalgal cells, which can further impact the metabolism and the accumulation of biomolecules such as lipids, carbohydrates, and proteins. Different characteristics of...Light regulates important metabolic processes in microalgal cells, which can further impact the metabolism and the accumulation of biomolecules such as lipids, carbohydrates, and proteins. Different characteristics of light have been studied on various strains of the model diatom Phaeodactylum tricornutum, but not on transconjugant cells and information on wild-type strains is still limited. Therefore, we studied the impact of different light characteristics such as spectral quality, light intensity and light shift on the growth, and the composition in lipids and fatty acids of P. tricornutum cells to provide a comprehensive context for future applications. Initially, we tested the impact of spectral quality and light intensity on P. tricornutum transformed with an episomal vector (Ptev), harboring the resistance gene Sh ble. Results indicated that Ptev cells accumulated more biomass and overall lipids in spectral quality Red 1 (R1: 34% > 600 nm > 66%) more effectively as compared to Red 2 (R2: 8% > 600 nm > 92%). It was also detected that cell granularity was higher in R1 as compared to R2. Furthermore, by testing two light intensities 65 μmol·m<sup>-2</sup>·s<sup>-1</sup> and 145 μmol·m<sup>-2</sup>·s<sup>-1</sup> light, it was observed that 145 μmol·m<sup>-2</sup>·s<sup>-1</sup> led to an increase in growth trend, total biomass and lipid content. Combining spectral qualities and light intensities, we show that the lipid accumulation raised by 2.8-fold. Studying the light intensity and spectral quality allowed us to optimize the light conditions to R1 spectral quality and light intensity 145 μmol·m<sup>-2</sup>·s<sup>-1</sup>. These initial results showed that red light R1 at 145 μmol·m<sup>-2</sup>·s<sup>-1</sup> was the best condition for biomass and total lipids accumulation in Ptev cells. Next, we further combined these two-light optimizations with a third light characteristics, i.e. light shift, where the cultures were shifted during the early stationary phase to a different light environment. We studied Red light shift (Rs) to investigate how light condition variations impacted P. tricornutum transconjugants Ptev and with an episomal vector containing the reporter gene YFP (PtYFP). We observed that Rs induced growth and fatty acid eicosapentaenoic acid (EPA) in Ptev as compared to PtYFP. Altogether, the study shows that red light shift of R1 at 145 μmol·m<sup>-2</sup>·s<sup>-1</sup> promoted biomass and total lipids accumulation in Ptev and PtYFP cells. The study provides a comprehensive approach to using different light characteristics with the aim to optimize growth and lipids, as well as to fatty acid production.展开更多
基金supported by Heilongjiang Provincial Natural Science Foundation of China(Grant No.YQ2022C012)China Postdoctoral Science Foundation(Grant No.2022MD713728)+1 种基金Heilongjiang Provincial Postdoctoral Fund(Grant No.LBHZ21046)the Open Project of Key Laboratory of Biology and Genetic Improvement of Horticultural Crops(Northeast Region),Ministry of Agriculture and Rural Affairs,and National Key Research and Development Program of China(Grant No.2023YFD1201501).
文摘Ogura cytoplasmic male sterility(Ogura CMS)is extensively applied in hybrid seed production in cruciferous crops.However,the posttranscriptional molecular basis of Ogura CMS in cruciferous crops remains elusive.Here,a data-independent acquisition-based proteomic approach coupled with a parallel reaction monitoring-based targeted proteomic assay was used to analyze the proteome dynamics of Ogura CMS cabbage line RM and its maintainer line RF during floral bud development to obtain insights into the mechanism underlying Ogura CMS in cruciferous crops.A total of 9162 proteins corresponding to 61464 peptides were identified in RM and RF floral buds.The proteomic fluctuation of RM was weaker than that of RF.Differences in protein expression between RM and RF gradually enlarged with floral bud development.Fifteen continually up-regulated and eight continually down-regulated proteins were found in RM relative to RF throughout floral bud development.Differentially expressed proteins between RM and RF during floral bud development were implicated in the endoplasmic reticulum(ER)-associated protein processing pathway,in which most of them exhibited down-regulated expression in RM.These data suggest that ER-associated protein processing may be involved in pollen abortion in Ogura CMS cabbage by inhibiting the expression of critical factors.Our findings not only deepen the understanding of the molecular mechanisms of Ogura CMS in cruciferous crops but also provide better guidance for applying Ogura CMS in the hybrid breeding of cruciferous crops.
文摘In the Sahelian zone in Africa, groundwater is the main source of drinking water for domestic, industrial, and agricultural uses. The groundwater of the Samba Dia sandy aquifer was assessed for understanding processes controlling the hydrogeochemistry and its drinking and irrigation suitability, on the basis of various water quality parameters. For the present study, thirty-three groundwater samples were collected in wells of the study area during the dry season in March 2021 and subjected to analysis for chemical characteristics (major ions), pH, electrical conductivity (EC), and total dissolved solids (TDS). Gibbs plot depicts that the process of ionic exchange is mainly due to the dissolution of water-rock interaction. The Piper diagram indicates a largely dominant sodium chloride facies with 70% of the groundwater samples followed by calcium chloride facies (18%) than calcium bicarbonate facies (12%). Analytical results of hydrogeochemical parameters of groundwater samples reveal that the majority of samples are within the World Health Organization safety range for drinking water. TDS and electrical conductivity (EC) values of groundwater indicate that 70% and 61% are safe for drinking water, respectively. Sodium percentage (% Na), Sodium Adsorption Ratio (SAR) values, and Ca/Mg ratio were calculated and compared with the standard guideline values recommended by the World Health Organization and agricultural water standards. This study shows that the groundwater in the area is mostly chemically suitable for drinking and irrigation, although some wells at the edge of the area exhibit signs of progressive salinization and traces of pollution.
文摘Light regulates important metabolic processes in microalgal cells, which can further impact the metabolism and the accumulation of biomolecules such as lipids, carbohydrates, and proteins. Different characteristics of light have been studied on various strains of the model diatom Phaeodactylum tricornutum, but not on transconjugant cells and information on wild-type strains is still limited. Therefore, we studied the impact of different light characteristics such as spectral quality, light intensity and light shift on the growth, and the composition in lipids and fatty acids of P. tricornutum cells to provide a comprehensive context for future applications. Initially, we tested the impact of spectral quality and light intensity on P. tricornutum transformed with an episomal vector (Ptev), harboring the resistance gene Sh ble. Results indicated that Ptev cells accumulated more biomass and overall lipids in spectral quality Red 1 (R1: 34% > 600 nm > 66%) more effectively as compared to Red 2 (R2: 8% > 600 nm > 92%). It was also detected that cell granularity was higher in R1 as compared to R2. Furthermore, by testing two light intensities 65 μmol·m<sup>-2</sup>·s<sup>-1</sup> and 145 μmol·m<sup>-2</sup>·s<sup>-1</sup> light, it was observed that 145 μmol·m<sup>-2</sup>·s<sup>-1</sup> led to an increase in growth trend, total biomass and lipid content. Combining spectral qualities and light intensities, we show that the lipid accumulation raised by 2.8-fold. Studying the light intensity and spectral quality allowed us to optimize the light conditions to R1 spectral quality and light intensity 145 μmol·m<sup>-2</sup>·s<sup>-1</sup>. These initial results showed that red light R1 at 145 μmol·m<sup>-2</sup>·s<sup>-1</sup> was the best condition for biomass and total lipids accumulation in Ptev cells. Next, we further combined these two-light optimizations with a third light characteristics, i.e. light shift, where the cultures were shifted during the early stationary phase to a different light environment. We studied Red light shift (Rs) to investigate how light condition variations impacted P. tricornutum transconjugants Ptev and with an episomal vector containing the reporter gene YFP (PtYFP). We observed that Rs induced growth and fatty acid eicosapentaenoic acid (EPA) in Ptev as compared to PtYFP. Altogether, the study shows that red light shift of R1 at 145 μmol·m<sup>-2</sup>·s<sup>-1</sup> promoted biomass and total lipids accumulation in Ptev and PtYFP cells. The study provides a comprehensive approach to using different light characteristics with the aim to optimize growth and lipids, as well as to fatty acid production.