The clay force field(CLAYFF) was supplemented by fluorine potential parameters deriving from experimental structures and used to model various topazes. The calculated cell parameters agree well with the observed str...The clay force field(CLAYFF) was supplemented by fluorine potential parameters deriving from experimental structures and used to model various topazes. The calculated cell parameters agree well with the observed structures. The quasi-linear correlation of the b lattice parameter to different F/OH ratios calculated by changing fluorine contents in OH-topaz supports that the F content can be measured by an optical method. Hydrogen bond calculations reveal that the hydrogen bond interaction to H1 is stronger than that to H2, and the more fluorine in the structure, the stronger the hydrogen bond interaction of hydroxyl hydrogen. Defect calculations provide the formation energies of all common defects and can be used to judge the ease of formation of them. The calculated vibrational frequencies are fairly consistent with available experimental results, and the 1080-cm^-1frequency often occurring in natural OH-topaz samples can be attributed to Si–F stretching because of the F substitution to OH and the Al–Si exchange.展开更多
Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "c...Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "cloud-like" configuration, which brings difficulties in quantifying the effective performance of defected casting. In this paper, the influences of random shrinkage porosity on the equivalent elastic modulus of QT400-18 casting were studied by a numerical statistics approach. An improved random algorithm was applied into the lattice model to simulate the "cloud-like" morphology of shrinkage porosity. Then, a large number of numerical samples containing random levels of shrinkage were generated by the proposed algorithm. The stress concentration factor and equivalent elastic modulus of these numerical samples were calculated. Based on a statistical approach, the effects of shrinkage porosity's distribution characteristics, such as area fraction, shape, and relative location on the casting's equivalent mechanical properties were discussed respectively. It is shown that the approach with randomly distributed defects has better predictive capabilities than traditional methods. The following conclusions can be drawn from the statistical simulations:(1) the effective modulus decreases remarkably if the shrinkage porosity percent is greater than 1.5%;(2) the average Stress Concentration Factor(SCF) produced by shrinkage porosity is about 2.0;(3) the defect's length across the loading direction plays a more important role in the effective modulus than the length along the loading direction;(4) the surface defect perpendicular to loading direction reduces the mean modulus about 1.5% more than a defect of other position.展开更多
Ceramics of Li0.98?xTa1.004?x/5O3 solid solutions with 0 ≤ x ≤ 0.20 are studied by a new theoretical approach. From the experience, we have proposed the new vacancy models which are able to describe substitutional m...Ceramics of Li0.98?xTa1.004?x/5O3 solid solutions with 0 ≤ x ≤ 0.20 are studied by a new theoretical approach. From the experience, we have proposed the new vacancy models which are able to describe substitutional mechanism in Ni-doped lithium tantalate. Calculations of the Curie temperature in Ni-doped non stoichiometric lithium tantalate reveal good correspondence with experimental results. The substitution mechanism of the doped compositions Ni in LiTaO3 crystal is discussed. So, the mechanism of phase transition due to thermal expansion of crystal is described.展开更多
This paper reports on a molecular dynamics study of structural rearrangements in a copper nanocrystal during nucleation of plastic deformation under uniaxial tension. The study shows that the resulting nucleation of p...This paper reports on a molecular dynamics study of structural rearrangements in a copper nanocrystal during nucleation of plastic deformation under uniaxial tension. The study shows that the resulting nucleation of partial dislocations on the free surface and their glide occurs through local fcc→bcc→hcp transformations via consistent atomic displacements. We propose an atomic model for the generation of dislocations and twins based on local reversible fcc→bcc→fcc transformations, with the reverse one proceeding through an alternative system. The model gives an insight into possible causes and mechanisms of the generation of partial dislocations and mechanical twins in two and more adjacent planes of plastically deformed nanocrystals. The obtained data allow a better understanding of how plasticity is generated in nanostructured materials.展开更多
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20140212)the Fundamental Research Funds for the Central Universities China(Grant Nos.2012QNA08)
文摘The clay force field(CLAYFF) was supplemented by fluorine potential parameters deriving from experimental structures and used to model various topazes. The calculated cell parameters agree well with the observed structures. The quasi-linear correlation of the b lattice parameter to different F/OH ratios calculated by changing fluorine contents in OH-topaz supports that the F content can be measured by an optical method. Hydrogen bond calculations reveal that the hydrogen bond interaction to H1 is stronger than that to H2, and the more fluorine in the structure, the stronger the hydrogen bond interaction of hydroxyl hydrogen. Defect calculations provide the formation energies of all common defects and can be used to judge the ease of formation of them. The calculated vibrational frequencies are fairly consistent with available experimental results, and the 1080-cm^-1frequency often occurring in natural OH-topaz samples can be attributed to Si–F stretching because of the F substitution to OH and the Al–Si exchange.
基金supported by the National Natural Science Foundation of China(Grant No.51305350)the Basic Research Foundation of NWPU(No.3102014JCQ01045)
文摘Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "cloud-like" configuration, which brings difficulties in quantifying the effective performance of defected casting. In this paper, the influences of random shrinkage porosity on the equivalent elastic modulus of QT400-18 casting were studied by a numerical statistics approach. An improved random algorithm was applied into the lattice model to simulate the "cloud-like" morphology of shrinkage porosity. Then, a large number of numerical samples containing random levels of shrinkage were generated by the proposed algorithm. The stress concentration factor and equivalent elastic modulus of these numerical samples were calculated. Based on a statistical approach, the effects of shrinkage porosity's distribution characteristics, such as area fraction, shape, and relative location on the casting's equivalent mechanical properties were discussed respectively. It is shown that the approach with randomly distributed defects has better predictive capabilities than traditional methods. The following conclusions can be drawn from the statistical simulations:(1) the effective modulus decreases remarkably if the shrinkage porosity percent is greater than 1.5%;(2) the average Stress Concentration Factor(SCF) produced by shrinkage porosity is about 2.0;(3) the defect's length across the loading direction plays a more important role in the effective modulus than the length along the loading direction;(4) the surface defect perpendicular to loading direction reduces the mean modulus about 1.5% more than a defect of other position.
文摘Ceramics of Li0.98?xTa1.004?x/5O3 solid solutions with 0 ≤ x ≤ 0.20 are studied by a new theoretical approach. From the experience, we have proposed the new vacancy models which are able to describe substitutional mechanism in Ni-doped lithium tantalate. Calculations of the Curie temperature in Ni-doped non stoichiometric lithium tantalate reveal good correspondence with experimental results. The substitution mechanism of the doped compositions Ni in LiTaO3 crystal is discussed. So, the mechanism of phase transition due to thermal expansion of crystal is described.
基金supported by the Russian Science Foundation(Project No.17-19-01374)
文摘This paper reports on a molecular dynamics study of structural rearrangements in a copper nanocrystal during nucleation of plastic deformation under uniaxial tension. The study shows that the resulting nucleation of partial dislocations on the free surface and their glide occurs through local fcc→bcc→hcp transformations via consistent atomic displacements. We propose an atomic model for the generation of dislocations and twins based on local reversible fcc→bcc→fcc transformations, with the reverse one proceeding through an alternative system. The model gives an insight into possible causes and mechanisms of the generation of partial dislocations and mechanical twins in two and more adjacent planes of plastically deformed nanocrystals. The obtained data allow a better understanding of how plasticity is generated in nanostructured materials.