To provide "more reasonable, more saving and more efficient" water and fertilizer application proposals, taking ‘Yujiao 5' as the experimental material, the effects of different irrigation times and nitrogen appli...To provide "more reasonable, more saving and more efficient" water and fertilizer application proposals, taking ‘Yujiao 5' as the experimental material, the effects of different irrigation times and nitrogen application treatments on the leaf area index and yield of wheat were studied using three-factor split plot method. The results showed that irrigation times, nitrogen application rate and the ratio of basa to topdressed nitrogen respectively had significant effects on the leaf area index, the yield and component factors of wheat. Under the treatment of W1(irrigation before sowing), the leaf area index showed a positive linear correlation with nitrogen application rate; under the treatments of W2(irrigation before sowing and at jointing stage) and W3(irrigation before sowing, at jointing stage and at grain filling stages),the leaf area index showed a positive linear correlation with nitrogen application rate at the jointing stage, booting stage and heading stage; 20 d after heading, the leaf area index showed a quadric curve relationship with nitrogen application rate at these stages, and the LAI of N3R2 was the highest. Under different irrigation times,the yield, ear number and kernels per ear showed quadric curve relationship with nitrogen application rate, 1 000-seed weight showed the trend of linear decrease with the increase of nitrogen application rate. Under the treatment combination of irrigation before sowing, at jointing stage and at grain filling stage, nitrogen application rate at 240 kg/hm^2 and the ratio of basal to topdressed nitrogen of 5:5, the grain yield(8 609.60 kg/hm^2), ear number(688.2×104/hm^2) and kernel number per ear(37.9 grains) reached the highest value at W3N3R2, and the grain yield of W3N3R2 increased by 144.8% compared to the W1N0. In conclusion, in Eastern Henan where the rainfall is insufficient at the late growth stage of wheat, the irrigation-saving space in wheat production is relatively small, but the nitrogen-saving space is relatively large.展开更多
The stimulative effect of trace elements on seed germination and seedling growth of Pinus tabulaeformis was tested. The experiments were carried out on seed soak and topdressing with different trace elements and varie...The stimulative effect of trace elements on seed germination and seedling growth of Pinus tabulaeformis was tested. The experiments were carried out on seed soak and topdressing with different trace elements and varied concentrations at the nursery of Gardens Research Institute, Harbin, in 2000-2001. The experimental results showed that soaking seed with 1% and 0.2% concentrations of Mn element produced best result for seed germination, and the germination rate was increased by 9%~19% for the seeds treated with 1% concentration and 12%~14% for the seeds treated with 0.2% concentration compared with the control group. The seeds treated with boron element had lowest germination rate. For trace element topdressing, Mn and Mo elements presented good result for seedling growth and the treatment with low concentration was even better. The height or chlorophyll content of the seedlings with spray of low-concentration Mn and Mo element was much higher than that of untreated ones. In the contrast to the treating method of seed soak, topdressing (application of spraying on foliage) had evident effect on seedling growth.展开更多
Intercropping is an important agronomic practice. However, assessment of intercropping systems using field experiments is often limited by time and cost. In this study, the suitability of using the DeNitrification DeC...Intercropping is an important agronomic practice. However, assessment of intercropping systems using field experiments is often limited by time and cost. In this study, the suitability of using the DeNitrification DeComposition(DNDC) model to simulate intercropping of maize(Zea mays L.) and soybean(Glycine max L.) and its aftereffect on the succeeding wheat(Triticum aestivum L.) crop was tested in the North China Plain. First, the model was calibrated and corroborated to simulate crop yield and nitrogen(N) uptake based on a field experiment with a typical double cropping system. With a wheat crop in winter, the experiment included five treatments in summer: maize monoculture, soybean monoculture, intercropping of maize and soybean with no N topdressing to maize(N0), intercropping of maize and soybean with 75 kg N ha–1topdressing to maize(N75), and intercropping of maize and soybean with 180 kg N ha–1topdressing to maize(N180). All treatments had 45 kg N ha–1as basal fertilizer. After calibration and corroboration, DNDC was used to simulate long-term(1955 to 2012) treatment effects on yield. Results showed that DNDC could stringently capture the yield and N uptake of the intercropping system under all N management scenarios, though it tended to underestimate wheat yield and N uptake under N0 and N75. Long-term simulation results showed that N75 led to the highest maize and soybean yields per unit planting area among all treatments, increasing maize yield by 59% and soybean yield by 24%, resulting in a land utilization rate 42% higher than monoculture. The results suggest a high potential to promote soybean production by intercropping soybean with maize in the North China Plain, which will help to meet the large national demand for soybean.展开更多
Understanding the relationship between the timing of N fertilizer applications and crop primary production is crucial for achieving high yield and N use efifciency in agriculture. This study investigated the effects o...Understanding the relationship between the timing of N fertilizer applications and crop primary production is crucial for achieving high yield and N use efifciency in agriculture. This study investigated the effects of starting-N plus topdressing N applications (as compared to the common practice of all basal application) on soybean photosynthetic capacity under different planting densities. A ifeld experiment was conducted in two growing seasons (2011 and 2012), and the soybean (Glycine max L. Merrill) cultivar was Dongnong 52, three planting densities (20, 25 and 30 plants m-2), and four N fertilizer application patterns (all N fertilizer of 6 g N m-2 as basal fertilizer, all N fertilizer as topdressing at beginning pod stage (R3), 1.8 g N m-2 as basal fertilizer and 4.2 g N m-2 as topdressing at stage R3 and full pod stage (R4), respectively). The results indicated that under the same planting density, compared to applying all N as basal fertilizer, the application of starter-N plus topdressing N substantially reduced the rate of pod abscission, and enhanced leaf area index (LAI) signiifcantly at beginning seed stage (R5) (P〈0.05), net assimilation rate (NAR) during stages R4-full seed stage (R6) (P〈0.05), contribution rate of post-seed iflling assimilate to seed (CPA) (P〈0.05), and yield (P〈0.05). Applying topdressing N at stage R4 resulted in higher net primary production and yield than applying topdressing N at stage R3. When applying starter-N plus topdressing N at planting density of 25 plants m-2, LAI after stage R5 and NAR after stage R4 were increased by 5.92-16.3%(P〈0.05) and 13.7-26.6%(P〈0.05) with the planting density of 20 plants m-2, respectively, and yield was 8.46-14.0%(P〈0.05) higher than that under 20 plants m-2. When planting density increased to 30 plants m-2, only LAI during stages R4-R5 and NAR during stages R4-R5 increased by applying starter-N plus topdressing N, while the other indexes declined. Overall, results of this study demonstrated that applying starter-N plus topdressing N could signiifcantly enhance soybean photosynthetic capacity after stage R5 at planting density of 25 plants m-2.展开更多
Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplantin...Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplanting—a new machine-transplanting method—and SRNF on hybrid rice yields. A 2-year splitplot experiment(2016–2017) was conducted in Meishan, Sichuan province, China, using two machinetransplanting methods(potted-seedling and blanket-seedling) and three N treatments. Total green leaf area, high-effective leaf area and its rate at heading, net photosynthetic rate of flag leaves 7 days after heading, glutamate synthase(GOGAT) and glutamine synthase(GS) activity after heading, dry matter production, and N accumulation at heading and maturity increased under the potted-seedling method or 70% SRNF as a base + 30% urea application at the panicle initiation stage(SBUP). Stem diameter and number of small and of all vascular bundles at the neck–panicle node in potted-seedling plants increased as a result of increasing numbers of effective panicles, secondary branches, and spikelets. In pottedseedling plants, treatment with SBUP increased the number of large and total vascular bundles at the panicle–neck internode and the number of differentiated and surviving secondary branches and spikelets and decreased the number of ineffective tillers and degenerated secondary branches and spikelets. We conclude that the potted-seedling machine transplanting method and SRNF combined with urea topdressing can strengthen the source–sink relationship in rice, resulting in higher yields.展开更多
Field experiments were conducted to study cotton nitrogen diagnosis and topdressing recommendation by measuring cotton tissue NO3- concentration with Reflectoquant. Results showed that the order of NO3- concentration ...Field experiments were conducted to study cotton nitrogen diagnosis and topdressing recommendation by measuring cotton tissue NO3- concentration with Reflectoquant. Results showed that the order of NO3- concentration in different cotton plant tissues is petiole > stem > leaf, and upper parts> lower parts. There was significant change in each growth period, which was, NO3- concentration in budding-blooming period was the highest whereas it was the lowest in full blooming period. NO3- concentration in the 4th expanding petiole is relatively stable and can sensitively indicate cotton nitrogen state so it was chosen as diagnosis tissue. NO3- content in budding-blooming period was significantly correlated with seed-cotton yield so it was chosen as diagnosis period. Primary cotton's nitrogen diagnosis index and amount of topdressing was formulated by regression of NO3- concentration against seed-cotton yield. It was not only rapid and accurate but also time-saving and flexible by using Reflectoquant to diagnose cotton nitrogen states and make side-dressing recommendation , so it is an agricultural technique with promising prospect.展开更多
Integrated water and fertilizer technology has the advantages of saving water,fertilizer and labour,which is widely applied in tomato plantation. Integrated water and fertilizer technology in topdressing and whole pro...Integrated water and fertilizer technology has the advantages of saving water,fertilizer and labour,which is widely applied in tomato plantation. Integrated water and fertilizer technology in topdressing and whole process of big and small tomatoes were studied,and their application effects were contrasted and analyzed,and application advantages and scopes of the two models were concluded.展开更多
Four wheat cultivars were used to study the effects of delayed nitrogen topdressing on population structure, grain yield and photosynthetic characteristics of flag leaves under high-yielding conditions. The results sh...Four wheat cultivars were used to study the effects of delayed nitrogen topdressing on population structure, grain yield and photosynthetic characteristics of flag leaves under high-yielding conditions. The results showed that the nitrogen topdressing delayed from overwintering-turning green stage (N1) to turning green-jointing stage(N2) and jointing-booting stage(N3) decreased ineffective tiller in spring, retarded the decline of green leaf area and chlorophyll content in late life span, promoted photosynthetic ability of flag leaves and significantly increased the grain yield. N3 treatment was suitable for most wheat cultivars except the genotypes with higher single spike productivity and less ears in unit area.展开更多
With Cangshan garlic and early bolting garlic as experimental materials,this paper studies the effect of nitrogen topdressing on the garlic growth and yield of garlic stems and garlic bulbs. The results show that unde...With Cangshan garlic and early bolting garlic as experimental materials,this paper studies the effect of nitrogen topdressing on the garlic growth and yield of garlic stems and garlic bulbs. The results show that under the same amount of nitrogen,applying ammonium phosphor nitrate can better promote the growth of garlic than applying urea and ammonium chloride; both ammonium chloride and ammonium phosphor nitrate can effectively improve the yield of garlic stems and garlic bulbs,especially for ammonium phosphor nitrate; through economic benefit analysis,applying ammonium chloride and ammonium phosphor nitrate can produce greater economic benefits than applying urea,and especially ammonium phosphor nitrate increases the economic benefits of Cangshan garlic and early bolting garlic by 5490 yuan and 6690 yuan per ha,respectively.展开更多
Compared with conventional full irrigation,the existing water-saving irrigation method achieves the purpose of water saving by actively controlling soil moisture.High-frequency irrigation can make the ideal conditions...Compared with conventional full irrigation,the existing water-saving irrigation method achieves the purpose of water saving by actively controlling soil moisture.High-frequency irrigation can make the ideal conditions for soil water movement and root absorption of water and nutrients.This research used a plot experiment in a greenhouse and set up different fertilization amounts and frequencies during the growth stage to study the effects of small-amount and continuous subsurface drip irrigation on the dry matter,yield,and quality of tomato and celery.The results showed that the frequency of topdressing had a great influence on the dry matter accumulation of tomatoes,and the amount of topdressing had little effect on the fresh weight of the upper part of a tomato plant.The application of high-frequency fertilizer increased the dry matter accumulation in the underground part of the tomato.Under the premise given amount of total fertilization,the growth rate and yield of tomatoes were positively correlated with the amount of topdressing.The optimum fertilization frequency was 1 time during the first fruit stage,3 times for the second fruit stage,and 5 times for the third fruit stage,the yield during the fourth stage was increased with higher frequency,and the topdressing was started ahead of the fourth fruit stage when the diameter of fruit was 40 mm.The lower fertilization frequency during the early stage and higher fertilization frequency during the later stage can increase the yield of celery.The higher ratio of topdressing,the higher frequency during the early growth stage,and the lower frequency during the later stage can achieve the best quality of celery.展开更多
In vegetable cultivation, the majority of N2O emissions occur after fertilization; it is therefore important to understand any factors contributing to this process. An experiment was conducted to investigate short-ter...In vegetable cultivation, the majority of N2O emissions occur after fertilization; it is therefore important to understand any factors contributing to this process. An experiment was conducted to investigate short-term N2O dynamics following topdressing in a greenhouse vegetable field in South China. During two topdressing processes, three different urea-N treatments with irrigation were conducted in May and June in a tomato (Lycopersicum esculentum) cultivation. The N2O fluxes, soil concentration profiles and soil environments at the 0-60 cm depths at 10 cm intervals were measured both immediately prior to and 5 days after topdressing. The N2O fluxes before topdressing ranged from 6.7=1=2.1 to 55.0-4-28.8 μg N m-2 h-1; even higher numbers were recorded in highly fertilized plots. The NO3-N accumulation in the soil caused by vegetable cultivation during the 5 years prior to the start of the experiment, resulted in high background N2O fluxes. One day after topdressing (1 DAT) in May and June, N2O fluxes increased, which coincided with sharp increases in soil N2O concentrations at depths of 2.5 and 15 cm and in NOa-N and NH4+-N contents at depths of 0-20 cm. From 1 to 5 DAT, fluctuations in the N2O fluxes did not harmonize with the N2O concentrations at a depth of 2.5 cm, which was attributed to different gas diffusion rates at depths of 0-10cm. These results suggested that surface soil N and environmental conditions were crucial for determining the short-term N2O ebullitions during topdressing in greenhouse vegetable cultivation.展开更多
基金Supported by the National Project of Transformation Fund for Agricultural Science and Technology Achievements:Pilot Production and Demonstration of New Wheat Variety and the Propagation of Breeder Seed(2013GB2D000300)The Special Fund of National Modern Agricultural Industry Technology System(CARS-03)~~
文摘To provide "more reasonable, more saving and more efficient" water and fertilizer application proposals, taking ‘Yujiao 5' as the experimental material, the effects of different irrigation times and nitrogen application treatments on the leaf area index and yield of wheat were studied using three-factor split plot method. The results showed that irrigation times, nitrogen application rate and the ratio of basa to topdressed nitrogen respectively had significant effects on the leaf area index, the yield and component factors of wheat. Under the treatment of W1(irrigation before sowing), the leaf area index showed a positive linear correlation with nitrogen application rate; under the treatments of W2(irrigation before sowing and at jointing stage) and W3(irrigation before sowing, at jointing stage and at grain filling stages),the leaf area index showed a positive linear correlation with nitrogen application rate at the jointing stage, booting stage and heading stage; 20 d after heading, the leaf area index showed a quadric curve relationship with nitrogen application rate at these stages, and the LAI of N3R2 was the highest. Under different irrigation times,the yield, ear number and kernels per ear showed quadric curve relationship with nitrogen application rate, 1 000-seed weight showed the trend of linear decrease with the increase of nitrogen application rate. Under the treatment combination of irrigation before sowing, at jointing stage and at grain filling stage, nitrogen application rate at 240 kg/hm^2 and the ratio of basal to topdressed nitrogen of 5:5, the grain yield(8 609.60 kg/hm^2), ear number(688.2×104/hm^2) and kernel number per ear(37.9 grains) reached the highest value at W3N3R2, and the grain yield of W3N3R2 increased by 144.8% compared to the W1N0. In conclusion, in Eastern Henan where the rainfall is insufficient at the late growth stage of wheat, the irrigation-saving space in wheat production is relatively small, but the nitrogen-saving space is relatively large.
文摘The stimulative effect of trace elements on seed germination and seedling growth of Pinus tabulaeformis was tested. The experiments were carried out on seed soak and topdressing with different trace elements and varied concentrations at the nursery of Gardens Research Institute, Harbin, in 2000-2001. The experimental results showed that soaking seed with 1% and 0.2% concentrations of Mn element produced best result for seed germination, and the germination rate was increased by 9%~19% for the seeds treated with 1% concentration and 12%~14% for the seeds treated with 0.2% concentration compared with the control group. The seeds treated with boron element had lowest germination rate. For trace element topdressing, Mn and Mo elements presented good result for seedling growth and the treatment with low concentration was even better. The height or chlorophyll content of the seedlings with spray of low-concentration Mn and Mo element was much higher than that of untreated ones. In the contrast to the treating method of seed soak, topdressing (application of spraying on foliage) had evident effect on seedling growth.
基金supported by the National Natural Science Foundation of China (31701995 and 31572208)the National Key Research & Development Program of China (2016YFD0800101)+1 种基金the Newton Fund of UK-China (BB/N013484/1)supported by China Scholarship Council (2015-7169)
文摘Intercropping is an important agronomic practice. However, assessment of intercropping systems using field experiments is often limited by time and cost. In this study, the suitability of using the DeNitrification DeComposition(DNDC) model to simulate intercropping of maize(Zea mays L.) and soybean(Glycine max L.) and its aftereffect on the succeeding wheat(Triticum aestivum L.) crop was tested in the North China Plain. First, the model was calibrated and corroborated to simulate crop yield and nitrogen(N) uptake based on a field experiment with a typical double cropping system. With a wheat crop in winter, the experiment included five treatments in summer: maize monoculture, soybean monoculture, intercropping of maize and soybean with no N topdressing to maize(N0), intercropping of maize and soybean with 75 kg N ha–1topdressing to maize(N75), and intercropping of maize and soybean with 180 kg N ha–1topdressing to maize(N180). All treatments had 45 kg N ha–1as basal fertilizer. After calibration and corroboration, DNDC was used to simulate long-term(1955 to 2012) treatment effects on yield. Results showed that DNDC could stringently capture the yield and N uptake of the intercropping system under all N management scenarios, though it tended to underestimate wheat yield and N uptake under N0 and N75. Long-term simulation results showed that N75 led to the highest maize and soybean yields per unit planting area among all treatments, increasing maize yield by 59% and soybean yield by 24%, resulting in a land utilization rate 42% higher than monoculture. The results suggest a high potential to promote soybean production by intercropping soybean with maize in the North China Plain, which will help to meet the large national demand for soybean.
基金financially supported by the Special Fund for Agro-Scientific Research in the Public Interest, China (201103003)the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD20B04)
文摘Understanding the relationship between the timing of N fertilizer applications and crop primary production is crucial for achieving high yield and N use efifciency in agriculture. This study investigated the effects of starting-N plus topdressing N applications (as compared to the common practice of all basal application) on soybean photosynthetic capacity under different planting densities. A ifeld experiment was conducted in two growing seasons (2011 and 2012), and the soybean (Glycine max L. Merrill) cultivar was Dongnong 52, three planting densities (20, 25 and 30 plants m-2), and four N fertilizer application patterns (all N fertilizer of 6 g N m-2 as basal fertilizer, all N fertilizer as topdressing at beginning pod stage (R3), 1.8 g N m-2 as basal fertilizer and 4.2 g N m-2 as topdressing at stage R3 and full pod stage (R4), respectively). The results indicated that under the same planting density, compared to applying all N as basal fertilizer, the application of starter-N plus topdressing N substantially reduced the rate of pod abscission, and enhanced leaf area index (LAI) signiifcantly at beginning seed stage (R5) (P〈0.05), net assimilation rate (NAR) during stages R4-full seed stage (R6) (P〈0.05), contribution rate of post-seed iflling assimilate to seed (CPA) (P〈0.05), and yield (P〈0.05). Applying topdressing N at stage R4 resulted in higher net primary production and yield than applying topdressing N at stage R3. When applying starter-N plus topdressing N at planting density of 25 plants m-2, LAI after stage R5 and NAR after stage R4 were increased by 5.92-16.3%(P〈0.05) and 13.7-26.6%(P〈0.05) with the planting density of 20 plants m-2, respectively, and yield was 8.46-14.0%(P〈0.05) higher than that under 20 plants m-2. When planting density increased to 30 plants m-2, only LAI during stages R4-R5 and NAR during stages R4-R5 increased by applying starter-N plus topdressing N, while the other indexes declined. Overall, results of this study demonstrated that applying starter-N plus topdressing N could signiifcantly enhance soybean photosynthetic capacity after stage R5 at planting density of 25 plants m-2.
基金supported by the National Key Research and Development Program of China(2017YFD0301701 and 2017YFD0301706)National Natural Science Foundation of China(31660369)。
文摘Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplanting—a new machine-transplanting method—and SRNF on hybrid rice yields. A 2-year splitplot experiment(2016–2017) was conducted in Meishan, Sichuan province, China, using two machinetransplanting methods(potted-seedling and blanket-seedling) and three N treatments. Total green leaf area, high-effective leaf area and its rate at heading, net photosynthetic rate of flag leaves 7 days after heading, glutamate synthase(GOGAT) and glutamine synthase(GS) activity after heading, dry matter production, and N accumulation at heading and maturity increased under the potted-seedling method or 70% SRNF as a base + 30% urea application at the panicle initiation stage(SBUP). Stem diameter and number of small and of all vascular bundles at the neck–panicle node in potted-seedling plants increased as a result of increasing numbers of effective panicles, secondary branches, and spikelets. In pottedseedling plants, treatment with SBUP increased the number of large and total vascular bundles at the panicle–neck internode and the number of differentiated and surviving secondary branches and spikelets and decreased the number of ineffective tillers and degenerated secondary branches and spikelets. We conclude that the potted-seedling machine transplanting method and SRNF combined with urea topdressing can strengthen the source–sink relationship in rice, resulting in higher yields.
文摘Field experiments were conducted to study cotton nitrogen diagnosis and topdressing recommendation by measuring cotton tissue NO3- concentration with Reflectoquant. Results showed that the order of NO3- concentration in different cotton plant tissues is petiole > stem > leaf, and upper parts> lower parts. There was significant change in each growth period, which was, NO3- concentration in budding-blooming period was the highest whereas it was the lowest in full blooming period. NO3- concentration in the 4th expanding petiole is relatively stable and can sensitively indicate cotton nitrogen state so it was chosen as diagnosis tissue. NO3- content in budding-blooming period was significantly correlated with seed-cotton yield so it was chosen as diagnosis period. Primary cotton's nitrogen diagnosis index and amount of topdressing was formulated by regression of NO3- concentration against seed-cotton yield. It was not only rapid and accurate but also time-saving and flexible by using Reflectoquant to diagnose cotton nitrogen states and make side-dressing recommendation , so it is an agricultural technique with promising prospect.
基金Supported by "Sannongliufang" Technology Collaboration Program in Zhejiang Province in 2014
文摘Integrated water and fertilizer technology has the advantages of saving water,fertilizer and labour,which is widely applied in tomato plantation. Integrated water and fertilizer technology in topdressing and whole process of big and small tomatoes were studied,and their application effects were contrasted and analyzed,and application advantages and scopes of the two models were concluded.
基金funded by the National Natural Science Foundation of China(39770445).
文摘Four wheat cultivars were used to study the effects of delayed nitrogen topdressing on population structure, grain yield and photosynthetic characteristics of flag leaves under high-yielding conditions. The results showed that the nitrogen topdressing delayed from overwintering-turning green stage (N1) to turning green-jointing stage(N2) and jointing-booting stage(N3) decreased ineffective tiller in spring, retarded the decline of green leaf area and chlorophyll content in late life span, promoted photosynthetic ability of flag leaves and significantly increased the grain yield. N3 treatment was suitable for most wheat cultivars except the genotypes with higher single spike productivity and less ears in unit area.
文摘With Cangshan garlic and early bolting garlic as experimental materials,this paper studies the effect of nitrogen topdressing on the garlic growth and yield of garlic stems and garlic bulbs. The results show that under the same amount of nitrogen,applying ammonium phosphor nitrate can better promote the growth of garlic than applying urea and ammonium chloride; both ammonium chloride and ammonium phosphor nitrate can effectively improve the yield of garlic stems and garlic bulbs,especially for ammonium phosphor nitrate; through economic benefit analysis,applying ammonium chloride and ammonium phosphor nitrate can produce greater economic benefits than applying urea,and especially ammonium phosphor nitrate increases the economic benefits of Cangshan garlic and early bolting garlic by 5490 yuan and 6690 yuan per ha,respectively.
基金This work was funded by the National Science and Technology Planning Project(Grant No.2014BAD12B06)the National Natural Science Fund(Grant No.51621061).
文摘Compared with conventional full irrigation,the existing water-saving irrigation method achieves the purpose of water saving by actively controlling soil moisture.High-frequency irrigation can make the ideal conditions for soil water movement and root absorption of water and nutrients.This research used a plot experiment in a greenhouse and set up different fertilization amounts and frequencies during the growth stage to study the effects of small-amount and continuous subsurface drip irrigation on the dry matter,yield,and quality of tomato and celery.The results showed that the frequency of topdressing had a great influence on the dry matter accumulation of tomatoes,and the amount of topdressing had little effect on the fresh weight of the upper part of a tomato plant.The application of high-frequency fertilizer increased the dry matter accumulation in the underground part of the tomato.Under the premise given amount of total fertilization,the growth rate and yield of tomatoes were positively correlated with the amount of topdressing.The optimum fertilization frequency was 1 time during the first fruit stage,3 times for the second fruit stage,and 5 times for the third fruit stage,the yield during the fourth stage was increased with higher frequency,and the topdressing was started ahead of the fourth fruit stage when the diameter of fruit was 40 mm.The lower fertilization frequency during the early stage and higher fertilization frequency during the later stage can increase the yield of celery.The higher ratio of topdressing,the higher frequency during the early growth stage,and the lower frequency during the later stage can achieve the best quality of celery.
基金Supported by the Japan Science and Technology Agency (No. 09000075)the National Natural Science Foundation of China (No. 30821140542)
文摘In vegetable cultivation, the majority of N2O emissions occur after fertilization; it is therefore important to understand any factors contributing to this process. An experiment was conducted to investigate short-term N2O dynamics following topdressing in a greenhouse vegetable field in South China. During two topdressing processes, three different urea-N treatments with irrigation were conducted in May and June in a tomato (Lycopersicum esculentum) cultivation. The N2O fluxes, soil concentration profiles and soil environments at the 0-60 cm depths at 10 cm intervals were measured both immediately prior to and 5 days after topdressing. The N2O fluxes before topdressing ranged from 6.7=1=2.1 to 55.0-4-28.8 μg N m-2 h-1; even higher numbers were recorded in highly fertilized plots. The NO3-N accumulation in the soil caused by vegetable cultivation during the 5 years prior to the start of the experiment, resulted in high background N2O fluxes. One day after topdressing (1 DAT) in May and June, N2O fluxes increased, which coincided with sharp increases in soil N2O concentrations at depths of 2.5 and 15 cm and in NOa-N and NH4+-N contents at depths of 0-20 cm. From 1 to 5 DAT, fluctuations in the N2O fluxes did not harmonize with the N2O concentrations at a depth of 2.5 cm, which was attributed to different gas diffusion rates at depths of 0-10cm. These results suggested that surface soil N and environmental conditions were crucial for determining the short-term N2O ebullitions during topdressing in greenhouse vegetable cultivation.