Purpose: We propose and apply a simplified nowcasting model to understand the correlations between social attention and topic trends of scientific publications. Design/methodology/approach: First, topics are generat...Purpose: We propose and apply a simplified nowcasting model to understand the correlations between social attention and topic trends of scientific publications. Design/methodology/approach: First, topics are generated from the obesity corpus by using the latent Dirichlet allocation (LDA) algorithm and time series of keyword search trends in Google Trends are obtained. We then establish the structural time series model using data from January 2004 to December 2012, and evaluate the model using data from January 2013. We employ a state-space model to separate different non-regression components in an observational time series (i.e. the tendency and the seasonality) and apply the "spike and slab prior" and stepwise regression to analyze the correlations between the regression component and the social media attention. The two parts are combined using Markov-chain Monte Carlo sampling techniques to obtain our results. Findings: The results of our study show that (1) the number of publications on child obesity increases at a lower rate than that of diabetes publications; (2) the number of publication on a given topic may exhibit a relationship with the season or time of year; and (3) there exists a correlation between the number of publications on a given topic and its social media attention, i.e. the search frequency related to that topic as identified by Google Trends. We found that our model is also able to predict the number of publications related to a given topic.展开更多
The rapid development of location-based social networks(LBSNs) has provided an unprecedented opportunity for better location-based services through point-of-interest(POI) recommendation. POI recommendation is pers...The rapid development of location-based social networks(LBSNs) has provided an unprecedented opportunity for better location-based services through point-of-interest(POI) recommendation. POI recommendation is personalized, location-aware, and context depended. However, extreme sparsity of user-POI matrix creates a severe challenge. In this paper we propose a textual-geographical-social aware probabilistic matrix factorization method for POI recommendation. Our model is textual-geographical-social aware probabilistic matrix factorization called TGS-PMF, it exploits textual information, geographical information, social information, and incorporates these factors effectively. First, we exploit an aggregated latent Dirichlet allocation(LDA) model to learn the interest topics of users and infer the interest POIs by mining textual information associated with POIs and generate interest relevance score. Second, we propose a kernel estimation method with an adaptive bandwidth to model the geographical correlations and generate geographical relevance score. Third, we build social relevance through the power-law distribution of user social relations to generate social relevance score. Then, our exploit probabilistic matrix factorization model(PMF) to integrate the interest, geographical, social relevance scores for POI recommendation. Finally, we implement experiments on a real LBSN check-in dataset. Experimental results show that TGS-PMF achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques.展开更多
基金supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2012-2012S1A3A2033291)the Yonsei University Future-leading Research Initiative of 2014
文摘Purpose: We propose and apply a simplified nowcasting model to understand the correlations between social attention and topic trends of scientific publications. Design/methodology/approach: First, topics are generated from the obesity corpus by using the latent Dirichlet allocation (LDA) algorithm and time series of keyword search trends in Google Trends are obtained. We then establish the structural time series model using data from January 2004 to December 2012, and evaluate the model using data from January 2013. We employ a state-space model to separate different non-regression components in an observational time series (i.e. the tendency and the seasonality) and apply the "spike and slab prior" and stepwise regression to analyze the correlations between the regression component and the social media attention. The two parts are combined using Markov-chain Monte Carlo sampling techniques to obtain our results. Findings: The results of our study show that (1) the number of publications on child obesity increases at a lower rate than that of diabetes publications; (2) the number of publication on a given topic may exhibit a relationship with the season or time of year; and (3) there exists a correlation between the number of publications on a given topic and its social media attention, i.e. the search frequency related to that topic as identified by Google Trends. We found that our model is also able to predict the number of publications related to a given topic.
基金supported by the National Key Project of Scientific and Technical Supporting Programs of China (2014BAH26F00)
文摘The rapid development of location-based social networks(LBSNs) has provided an unprecedented opportunity for better location-based services through point-of-interest(POI) recommendation. POI recommendation is personalized, location-aware, and context depended. However, extreme sparsity of user-POI matrix creates a severe challenge. In this paper we propose a textual-geographical-social aware probabilistic matrix factorization method for POI recommendation. Our model is textual-geographical-social aware probabilistic matrix factorization called TGS-PMF, it exploits textual information, geographical information, social information, and incorporates these factors effectively. First, we exploit an aggregated latent Dirichlet allocation(LDA) model to learn the interest topics of users and infer the interest POIs by mining textual information associated with POIs and generate interest relevance score. Second, we propose a kernel estimation method with an adaptive bandwidth to model the geographical correlations and generate geographical relevance score. Third, we build social relevance through the power-law distribution of user social relations to generate social relevance score. Then, our exploit probabilistic matrix factorization model(PMF) to integrate the interest, geographical, social relevance scores for POI recommendation. Finally, we implement experiments on a real LBSN check-in dataset. Experimental results show that TGS-PMF achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques.