The pivot language approach for statistical machine translation(SMT) is a good method to break the resource bottleneck for certain language pairs. However, in the implementation of conventional approaches, pivotside c...The pivot language approach for statistical machine translation(SMT) is a good method to break the resource bottleneck for certain language pairs. However, in the implementation of conventional approaches, pivotside context information is far from fully utilized, resulting in erroneous estimations of translation probabilities. In this study, we propose two topic-aware pivot language approaches to use different levels of pivot-side context. The first method takes advantage of document-level context by assuming that the bridged phrase pairs should be similar in the document-level topic distributions. The second method focuses on the effect of local context. Central to this approach are that the phrase sense can be reflected by local context in the form of probabilistic topics, and that bridged phrase pairs should be compatible in the latent sense distributions. Then, we build an interpolated model bringing the above methods together to further enhance the system performance. Experimental results on French-Spanish and French-German translations using English as the pivot language demonstrate the effectiveness of topic-based context in pivot-based SMT.展开更多
基金Project supported by the National High-Tech R&D Program of China(No.2012BAH14F03)the National Natural Science Foundation of China(Nos.61005052 and 61303082)+2 种基金the Re-search Fund for the Doctoral Program of Higher Education of China(No.20120121120046)the Natural Science Foundation of Fujian Province of China(No.2011J01360)the Funda-mental Research Funds for the Central Universities,China(No.2010121068)
文摘The pivot language approach for statistical machine translation(SMT) is a good method to break the resource bottleneck for certain language pairs. However, in the implementation of conventional approaches, pivotside context information is far from fully utilized, resulting in erroneous estimations of translation probabilities. In this study, we propose two topic-aware pivot language approaches to use different levels of pivot-side context. The first method takes advantage of document-level context by assuming that the bridged phrase pairs should be similar in the document-level topic distributions. The second method focuses on the effect of local context. Central to this approach are that the phrase sense can be reflected by local context in the form of probabilistic topics, and that bridged phrase pairs should be compatible in the latent sense distributions. Then, we build an interpolated model bringing the above methods together to further enhance the system performance. Experimental results on French-Spanish and French-German translations using English as the pivot language demonstrate the effectiveness of topic-based context in pivot-based SMT.