Purpose: We propose and apply a simplified nowcasting model to understand the correlations between social attention and topic trends of scientific publications. Design/methodology/approach: First, topics are generat...Purpose: We propose and apply a simplified nowcasting model to understand the correlations between social attention and topic trends of scientific publications. Design/methodology/approach: First, topics are generated from the obesity corpus by using the latent Dirichlet allocation (LDA) algorithm and time series of keyword search trends in Google Trends are obtained. We then establish the structural time series model using data from January 2004 to December 2012, and evaluate the model using data from January 2013. We employ a state-space model to separate different non-regression components in an observational time series (i.e. the tendency and the seasonality) and apply the "spike and slab prior" and stepwise regression to analyze the correlations between the regression component and the social media attention. The two parts are combined using Markov-chain Monte Carlo sampling techniques to obtain our results. Findings: The results of our study show that (1) the number of publications on child obesity increases at a lower rate than that of diabetes publications; (2) the number of publication on a given topic may exhibit a relationship with the season or time of year; and (3) there exists a correlation between the number of publications on a given topic and its social media attention, i.e. the search frequency related to that topic as identified by Google Trends. We found that our model is also able to predict the number of publications related to a given topic.展开更多
Neural stem cells,which are capable of multi-potential differentiation and self-renewal,have recently been shown to have clinical potential for repairing central nervous system tissue damage.However,the theme trends a...Neural stem cells,which are capable of multi-potential differentiation and self-renewal,have recently been shown to have clinical potential for repairing central nervous system tissue damage.However,the theme trends and knowledge structures for human neural stem cells have not yet been studied bibliometrically.In this study,we retrieved 2742 articles from the PubMed database from 2013 to 2018 using "Neural Stem Cells" as the retrieval word.Co-word analysis was conducted to statistically quantify the characteristics and popular themes of human neural stem cell-related studies.Bibliographic data matrices were generated with the Bibliographic Item Co-Occurrence Matrix Builder.We identified 78 high-frequency Medical Subject Heading(MeSH)terms.A visual matrix was built with the repeated bisection method in gCLUTO software.A social network analysis network was generated with Ucinet 6.0 software and GraphPad Prism 5 software.The analyses demonstrated that in the 6-year period,hot topics were clustered into five categories.As suggested by the constructed strategic diagram,studies related to cytology and physiology were well-developed,whereas those related to neural stem cell applications,tissue engineering,metabolism and cell signaling,and neural stem cell pathology and virology remained immature.Neural stem cell therapy for stroke and Parkinson’s disease,the genetics of microRNAs and brain neoplasms,as well as neuroprotective agents,Zika virus,Notch receptor,neural crest and embryonic stem cells were identified as emerging hot spots.These undeveloped themes and popular topics are potential points of focus for new studies on human neural stem cells.展开更多
Social media data created a paradigm shift in assessing situational awareness during a natural disaster or emergencies such as wildfire, hurricane, tropical storm etc. Twitter as an emerging data source is an effectiv...Social media data created a paradigm shift in assessing situational awareness during a natural disaster or emergencies such as wildfire, hurricane, tropical storm etc. Twitter as an emerging data source is an effective and innovative digital platform to observe trend from social media users’ perspective who are direct or indirect witnesses of the calamitous event. This paper aims to collect and analyze twitter data related to the recent wildfire in California to perform a trend analysis by classifying firsthand and credible information from Twitter users. This work investigates tweets on the recent wildfire in California and classifies them based on witnesses into two types: 1) direct witnesses and 2) indirect witnesses. The collected and analyzed information can be useful for law enforcement agencies and humanitarian organizations for communication and verification of the situational awareness during wildfire hazards. Trend analysis is an aggregated approach that includes sentimental analysis and topic modeling performed through domain-expert manual annotation and machine learning. Trend analysis ultimately builds a fine-grained analysis to assess evacuation routes and provide valuable information to the firsthand emergency responders<span style="font-family:Verdana;">.</span>展开更多
目的通过文献计量学分析牛黄相关研究文献,探讨当前牛黄研究热点及趋势。方法全面检索中国知网和Web of Science关于牛黄的相关文献,利用CiteSpace 6.1.R6文献计量学工具绘制牛黄研究的发文趋势、作者、机构和关键词知识图谱。结果经筛...目的通过文献计量学分析牛黄相关研究文献,探讨当前牛黄研究热点及趋势。方法全面检索中国知网和Web of Science关于牛黄的相关文献,利用CiteSpace 6.1.R6文献计量学工具绘制牛黄研究的发文趋势、作者、机构和关键词知识图谱。结果经筛选最终纳入中文文献2514篇、英文文献318篇,马双成(50篇)、Liu Dong(7篇)分别为中、英文发文量最多的作者;中国食品药品检定研究院(56篇)和Huazhong University of Science and Technology(9篇)分别为中、英文文献发文量最多的机构;中文和英文的关键词分析结果显示,牛黄研究的热点趋势集中在牛黄及其代用品的成分鉴定、含量测定、药理作用及机制、临床疗效与应用等领域。结论牛黄的研究逐年增多且逐渐深入,对牛黄相关课题的研究具有借鉴意义。展开更多
基金supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2012-2012S1A3A2033291)the Yonsei University Future-leading Research Initiative of 2014
文摘Purpose: We propose and apply a simplified nowcasting model to understand the correlations between social attention and topic trends of scientific publications. Design/methodology/approach: First, topics are generated from the obesity corpus by using the latent Dirichlet allocation (LDA) algorithm and time series of keyword search trends in Google Trends are obtained. We then establish the structural time series model using data from January 2004 to December 2012, and evaluate the model using data from January 2013. We employ a state-space model to separate different non-regression components in an observational time series (i.e. the tendency and the seasonality) and apply the "spike and slab prior" and stepwise regression to analyze the correlations between the regression component and the social media attention. The two parts are combined using Markov-chain Monte Carlo sampling techniques to obtain our results. Findings: The results of our study show that (1) the number of publications on child obesity increases at a lower rate than that of diabetes publications; (2) the number of publication on a given topic may exhibit a relationship with the season or time of year; and (3) there exists a correlation between the number of publications on a given topic and its social media attention, i.e. the search frequency related to that topic as identified by Google Trends. We found that our model is also able to predict the number of publications related to a given topic.
基金supported by the National Natural Science Foundation of China,No.81471308(to JL)the Stem Cell Clinical Research Project in China,No.CMR-20161129-1003(to JL)the Innovation Technology Funding of Dalian in China,No.2018J11CY025(to JL)
文摘Neural stem cells,which are capable of multi-potential differentiation and self-renewal,have recently been shown to have clinical potential for repairing central nervous system tissue damage.However,the theme trends and knowledge structures for human neural stem cells have not yet been studied bibliometrically.In this study,we retrieved 2742 articles from the PubMed database from 2013 to 2018 using "Neural Stem Cells" as the retrieval word.Co-word analysis was conducted to statistically quantify the characteristics and popular themes of human neural stem cell-related studies.Bibliographic data matrices were generated with the Bibliographic Item Co-Occurrence Matrix Builder.We identified 78 high-frequency Medical Subject Heading(MeSH)terms.A visual matrix was built with the repeated bisection method in gCLUTO software.A social network analysis network was generated with Ucinet 6.0 software and GraphPad Prism 5 software.The analyses demonstrated that in the 6-year period,hot topics were clustered into five categories.As suggested by the constructed strategic diagram,studies related to cytology and physiology were well-developed,whereas those related to neural stem cell applications,tissue engineering,metabolism and cell signaling,and neural stem cell pathology and virology remained immature.Neural stem cell therapy for stroke and Parkinson’s disease,the genetics of microRNAs and brain neoplasms,as well as neuroprotective agents,Zika virus,Notch receptor,neural crest and embryonic stem cells were identified as emerging hot spots.These undeveloped themes and popular topics are potential points of focus for new studies on human neural stem cells.
文摘Social media data created a paradigm shift in assessing situational awareness during a natural disaster or emergencies such as wildfire, hurricane, tropical storm etc. Twitter as an emerging data source is an effective and innovative digital platform to observe trend from social media users’ perspective who are direct or indirect witnesses of the calamitous event. This paper aims to collect and analyze twitter data related to the recent wildfire in California to perform a trend analysis by classifying firsthand and credible information from Twitter users. This work investigates tweets on the recent wildfire in California and classifies them based on witnesses into two types: 1) direct witnesses and 2) indirect witnesses. The collected and analyzed information can be useful for law enforcement agencies and humanitarian organizations for communication and verification of the situational awareness during wildfire hazards. Trend analysis is an aggregated approach that includes sentimental analysis and topic modeling performed through domain-expert manual annotation and machine learning. Trend analysis ultimately builds a fine-grained analysis to assess evacuation routes and provide valuable information to the firsthand emergency responders<span style="font-family:Verdana;">.</span>
文摘目的通过文献计量学分析牛黄相关研究文献,探讨当前牛黄研究热点及趋势。方法全面检索中国知网和Web of Science关于牛黄的相关文献,利用CiteSpace 6.1.R6文献计量学工具绘制牛黄研究的发文趋势、作者、机构和关键词知识图谱。结果经筛选最终纳入中文文献2514篇、英文文献318篇,马双成(50篇)、Liu Dong(7篇)分别为中、英文发文量最多的作者;中国食品药品检定研究院(56篇)和Huazhong University of Science and Technology(9篇)分别为中、英文文献发文量最多的机构;中文和英文的关键词分析结果显示,牛黄研究的热点趋势集中在牛黄及其代用品的成分鉴定、含量测定、药理作用及机制、临床疗效与应用等领域。结论牛黄的研究逐年增多且逐渐深入,对牛黄相关课题的研究具有借鉴意义。