Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,w...Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.展开更多
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord....Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord.Under normal conditions,maintenance of this complex system is structurally and functionally supported by astrocytes (ACs)and other glial cells,the processes of which form a framework surrounding neuronal cell bodies,dendrites,axons,and synapses.展开更多
Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploi...Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.展开更多
This study describes the floristic composition and structure of a woody stand in the Senegalese Sahel, paying particular attention to the edaphic factors of its floristic composition. A stratified inventory considerin...This study describes the floristic composition and structure of a woody stand in the Senegalese Sahel, paying particular attention to the edaphic factors of its floristic composition. A stratified inventory considering the different relief units was adopted. Woody vegetation was surveyed using a dendrometric approach. The results obtained show that the flora is dominated by a few species adapted to drought, such as Balanites aegyptiaca (L.) Del., Calotropis procera Ait. and Boscia senegalensis (Pers.). The distribution of this flora and the structure of the ligneous plants are linked to the topography. In the lowlands, the flora is more diversified and the ligneous plants reach their optimum level of development compared with the higher relief areas. In the lowlands, there are a few woody species which, in the past, were indicative of better climatic conditions. These are Anogeissus leiocarpus (DC.), Commiphora africana (A. Rich.), Feretia apodanthera Del., Loeseneriella africana (A. Smith), Mitragyna inermis (Willd.) and Sclerocarya birrea (A. Rich). It is important that their reintroduction into reforestation projects takes account of their edaphic preference.展开更多
The finite difference method(FDM)is an important numerical approach for simulating the propagation of seismic waves,and some FDMs can be used to study the impact of the Earth’s curvature and topography over large dis...The finite difference method(FDM)is an important numerical approach for simulating the propagation of seismic waves,and some FDMs can be used to study the impact of the Earth’s curvature and topography over large distances.To efficiently model the effects of the Earth’s irregular topography on the propagation of seismic waves,here we optimize a previously proposed grid mesh method and develop a novel two-dimensional boundary-conforming FDM based on a curvilinear polar coordinate system.This method efficiently simulates the propagation of seismic waves in an arc-shaped model with large variations in surface topography.Our method was benchmarked against other reported methods using several global-scale models.The consistency of the results confirms the validity of our proposed optimization strategy.Furthermore,our findings indicate that the proposed optimization strategy improves computational efficiency.展开更多
New adaptive preprocessing algorithms based on the polar coordinate system were put forward to get high-precision corneal topography calculation results. Adaptive locating algorithms of concentric circle center were c...New adaptive preprocessing algorithms based on the polar coordinate system were put forward to get high-precision corneal topography calculation results. Adaptive locating algorithms of concentric circle center were created to accurately capture the circle center of original Placido-based image, expand the image into matrix centered around the circle center, and convert the matrix into the polar coordinate system with the circle center as pole. Adaptive image smoothing treatment was followed and the characteristics of useful circles were extracted via horizontal edge detection, based on useful circles presenting approximate horizontal lines while noise signals presenting vertical lines or different angles. Effective combination of different operators of morphology were designed to remedy data loss caused by noise disturbances, get complete image about circle edge detection to satisfy the requests of precise calculation on follow-up parameters. The experimental data show that the algorithms meet the requirements of practical detection with characteristics of less data loss, higher data accuracy and easier availability.展开更多
The Bering Sea circulation is derived as a variational inverse of hydrographic profiles( temperature and salinity) , atmospheric climatologies and historical observation of ocean curents. The important result of thi...The Bering Sea circulation is derived as a variational inverse of hydrographic profiles( temperature and salinity) , atmospheric climatologies and historical observation of ocean curents. The important result of this study is estimate of the mean climatological sea surface height (SSH) that can be used as a reference for satellite altimetry sea level anomaly data in the Bering Sea region. Numerical experiments reveal that, when combined with satellite altimetry, the obtained reference SSH effectively constrains a realistic reconstruction of the Amukta Pass circulation.展开更多
Compared to single-polarization synthetic aperture radar(SAR)data,fully polarimetric SAR data can provide more detailed information of the sea surface,which is important for applications such as shallow sea topography...Compared to single-polarization synthetic aperture radar(SAR)data,fully polarimetric SAR data can provide more detailed information of the sea surface,which is important for applications such as shallow sea topography detection.The Gaofen-3 satellite provides abundant polarimetric SAR data for ocean research.In this paper,a shallow sea topography detection method was proposed based on fully polarimetric Gaofen-3 SAR data.This method considers swell patterns and only requires SAR data and little prior knowledge of the water depth to detect shallow sea topography.Wave tracking was performed based on preprocessed fully polarimetric SAR data,and the water depth was then calculated considering the wave parameters and the linear dispersion relationships.In this paper,four study areas were selected for experiments,and the experimental results indicated that the polarimetric scattering parameterαhad higher detection accuracy than quad-polarization images.The mean relative errors were 14.52%,10.30%,12.56%,and 12.90%,respectively,in the four study areas.In addition,this paper also analyzed the detection ability of this model for different topographies,and the experiments revealed that the topography could be well recognized when the topography gradient is small,the topography gradient direction is close to the wave propagation direction,and the isobath line is regular.展开更多
The typical location and number of anemometer towers in the assessed area are the key to the accuracy of wind resource assessment in complex topography.As calculation examples,this paper used two typical complex topog...The typical location and number of anemometer towers in the assessed area are the key to the accuracy of wind resource assessment in complex topography.As calculation examples,this paper used two typical complex topography wind farms in Guangxi,Yunnan province in China.Firstly,we simulated the wind resource status of the anemometer tower in the Meteodyn WT software.Secondly,we compared the simulated wind resource with the actual measured data by the anemometer tower in the same situation.Thirdly,we analyzed the influence of anemometer tower location and quantity in the accuracy of wind resource assessment through the comparison results.The results showed that the range which the anemometer tower can represent is limited(<5 kilometers),and the prediction error more than 5%.Besides,the anemometer towers in special terrain areas(such as wind acceleration areas)cannot be used as a representative choice.The relative error of the simulated average annual wind speed by choose different number of anemometer towers is about 4%,and the grid-connected power generation more than 6%.The representative effect of anemometer towers is of crucial for improving the accuracy of wind resource assessment in engineering applications.展开更多
High-speed milling of titanium alloys is widely used in aviation and aerospace industries for its high efficiency and good quality.In order to optimize the machining parameters in high-speed milling TB6 titanium alloy...High-speed milling of titanium alloys is widely used in aviation and aerospace industries for its high efficiency and good quality.In order to optimize the machining parameters in high-speed milling TB6 titanium alloy,experiments of high-speed milling and fatigue were conducted to investigate the effect of parameters on 3D surface topography and fatigue life.Based on the fatigue fracture,the effect mechanism of surface topography on the fatigue crack initiation was proposed.The experiment results show that when the milling speed ranged from 100 m/min to 140 m/min,and the feed per tooth ranged from 0.02 mm/z to 0.06 mm/z,the obtained surface roughness were within the limit(0.8 μm).Fatigue life decreased sharply with the increase of surface equivalent stress concentration factor.The average error of fatigue life between the established model and the experimental results was 6.25%.The fatigue cracks nucleated at the intersection edge of machined surface.展开更多
AIM:To present the 1-year results of a prospective cohort study investigating the efficacy,potential mechanism,and safety of orthokeratology(ortho-k)with different back optic zone diameters(BOZD)for myopia control in ...AIM:To present the 1-year results of a prospective cohort study investigating the efficacy,potential mechanism,and safety of orthokeratology(ortho-k)with different back optic zone diameters(BOZD)for myopia control in children.METHODS:This randomized clinical study was performed between Dec.2020 and Dec.2021.Participants were randomly assigned to three groups wearing ortho-k:5 mm BOZD(5-MM group),5.5 mm BOZD(5.5-MM group),and 6 mm BOZD(6-MM group).The 1-year data were recorded,including axial length,relative peripheral refraction(RPR,measured by multispectral refractive topography,MRT),and visual quality.The contrast sensitivity(CS)was evaluated by CSV-1000 instrument with spatial frequencies of 3,6,12,and 18 cycles/degree(c/d);the corneal higher-order aberrations(HOAs)were measured by iTrace aberration analyzer.The one-way ANOVA was performed to assess the differences between the three groups.The correlation between the change in AL and RPR was calculated by Pearson’s correlation coefficient.RESULTS:The 1-year results of 20,21,and 21 subjects in the 5-MM,5.5-MM,and 6-MM groups,respectively,were presented.There were no statistical differences in baseline age,sex,or ocular parameters between the three groups(all P>0.05).At the 1-year visit,the 5-MM group had lower axial elongation than the 6-MM group(0.07±0.09 vs 0.18±0.11 mm,P=0.001).The 5-MM group had more myopic total RPR(TRPR,P=0.014),with RPR in the 15°–30°(RPR 15–30,P=0.015),30°–45°(RPR 30–45,P=0.011),temporal(RPR-T,P=0.008),and nasal area(RPR-N,P<0.001)than the 6-MM group.RPR 15–30 in the 5.5-MM group was more myopic than that in the 6-MM group(P=0.002),and RPR-N in the 5-MM group was more myopic than that in the 5.5-MM group(P<0.001).There were positive correlations between the axial elongation and the change in TRPR(r=0.756,P<0.001),RPR 15–30(r=0.364,P=0.004),RPR 30–45(r=0.306,P=0.016),and RPR-N(r=0.253,P=0.047).The CS decreased at 3 c/d(P<0.001),and the corneal HOAs increased in the 5-MM group(P=0.030).CONCLUSION:Ortho-k with 5 mm BOZD can control myopia progression more effectively.The mechanism may be associated with greater myopic shifts in RPR.展开更多
We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to sol...We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff botmdary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.展开更多
As fundamental parameters of the Antarctic Ice Sheet,ice thickness and subglacial topography are critical factors for studying the basal conditions and mass balance in Antarctica.During CHINARE 24(the 24 th Chinese N...As fundamental parameters of the Antarctic Ice Sheet,ice thickness and subglacial topography are critical factors for studying the basal conditions and mass balance in Antarctica.During CHINARE 24(the 24 th Chinese National Antarctic Research Expedition,2007/08),the research team used a deep ice-penetrating radar system to measure the ice thickness and subglacial topography of the "Chinese Wall" around Kunlun Station,East Antarctica.Preliminary results show that the ice thickness varies mostly from 1600 m to 2800 m along the "Chinese Wall",with the thickest ice being 3444 m,and the thinnest ice 1255 m.The average bedrock elevation is 1722 m,while the minimum is just 604 m.Compared with the northern side of the ice divide,the ice thickness is a little greater and the subglacial topography lower on the southern side,which is also characterized by four deep valleys.We found no basal freeze-on ice in the Gamburtsev Subglacial Mountains area,subglacial lakes,or water bodies along the "Chinese Wall".Ice thickness and subglacial topography data extracted from the Bedmap 2 database along the "Chinese Wall" are consistent with our results,but their resolution and accuracy are very limited in areas where the bedrock fluctuates intensely.The distribution of ice thickness and subglacial topography detected by ice-penetrating radar clarifies the features of the ice sheet in this "inaccessible" region.These results will help to advance the study of ice sheet dynamics and the determination of future locations of the GSM's geological and deep ice core drilling sites in the Dome A region.展开更多
In order to eliminate the effect of ocean bottom topography on seismic wave field,we transformed curved(x,z)coordinate system grids into rectangular(ξ,η)coordinate system grids and derived a 2-D scalar acoustic ...In order to eliminate the effect of ocean bottom topography on seismic wave field,we transformed curved(x,z)coordinate system grids into rectangular(ξ,η)coordinate system grids and derived a 2-D scalar acoustic wave equation in theξ,ηdomain.The seismic wave field collected at the sea surface was downward continued to the ocean bottom by the inverse finite difference method with the water velocity and then was reversely continued to the ocean surface by the finite difference method using the layer velocity from just below the ocean bottom in the(ξ,η)domain.Simulation calculations and practical application show that this method can not only remove the reflection travel time distortion but also correct the dynamic parameter changes caused by the ocean bottom topography.The inverted velocity after wave field continuation is much more accurate than before continuation and the image section was greatly improved compared to the original wave field.展开更多
Utilizing the adopted average topographic density of 2670 kg/m^(3)in the reduction of gravity anomalies introduces errors attributed to topographic density variations,which consequently affect geoid modeling accuracy....Utilizing the adopted average topographic density of 2670 kg/m^(3)in the reduction of gravity anomalies introduces errors attributed to topographic density variations,which consequently affect geoid modeling accuracy.Furthermore,the mean gravity along the plumbline within the topography in the definition of Helmert orthometric heights is computed approximately by applying the Poincar e-Prey gravity reduction where the topographic density variations are disregarded.The Helmert orthometric heights of benchmarks are then affected by errors.These errors could be random or systematic depending on the specific geological setting of the region where the leveling network is physically established and/or the geoid model is determined.An example of systematic errors in orthometric heights can be given for large regions characterized by sediment or volcanic deposits,the density of which is substantially lower than the adopted topographic density used in Helmert's definition of heights.The same applies to geoid modeling errors.In this study,we investigate these errors in the Hong Kong territory,where topographic density is about 20%lower than the density of 2670 kg/m^(3).We use the digital rock density model to estimate the effect of topographic density variations on the geoid and orthometric heights.Our results show that this effect on the geoid and Helmert orthometric heights reach maxima of about 2.1 and 0.5 cm,respectively.Both results provide clear evidence that rock density models are essential in physical geodesy applications involving gravimetric geoid modeling and orthometric height determination despite some criticism that could be raised regarding the reliability of these density models.However,in regions dominated by sedimentary and igneous rocks,the geological information is essential in these applications because topographic densities are substantially lower than the average density of 2670 kg/m^(3),thus introducing large systematic errors in geoid and orthometric heights.展开更多
One of the major innovations awaiting in electron microscopy is full three-dimensional imaging at atomic resolution.Despite the success of aberration correction to deep sub-angstrom lateral resolution,spatial resoluti...One of the major innovations awaiting in electron microscopy is full three-dimensional imaging at atomic resolution.Despite the success of aberration correction to deep sub-angstrom lateral resolution,spatial resolution in depth is still far from atomic resolution.In scanning transmission electron microscopy(STEM),this poor depth resolution is due to the limitation of the illumination angle.To overcome this physical limitation,it is essential to implement a next-generation aberration corrector in STEM that can significantly improve the depth resolution.This review discusses the capability of depth sectioning for three-dimensional imaging combined with large-angle illumination STEM.Furthermore,the statistical analysis approach remarkably improves the depth resolution,making it possible to achieve three-dimensional atomic resolution imaging at oxide surfaces.We will also discuss the future prospects of three-dimensional imaging at atomic resolution by STEM depth sectioning.展开更多
Tree mortality significantly influences forest structure and function,yet our understanding of its dynamic patterns among a range of tree sizes and among different plant functional types(PFTs)remains incomplete.This s...Tree mortality significantly influences forest structure and function,yet our understanding of its dynamic patterns among a range of tree sizes and among different plant functional types(PFTs)remains incomplete.This study analysed size-dependent tree mortality in a temperate forest,encompassing 46 tree species and 32,565 individuals across different PFTs(i.e.,evergreen conifer vs.deciduous broadleaf species,shade-tolerant vs.shade-intolerant species).By employing all-subset regression procedures and logistic generalized linear mixed-effects models,we identified distinct mortality patterns influenced by biotic and abiotic factors.Our results showed a stable mortality patte rn in eve rgreen conifer species,contrasted by a declining pattern in deciduous broadleaf and shadetolerant,as well as shade-intolerant species,across size classes.The contribution to tree mortality of evergreen conifer species shifted from abiotic to biotic factors with increasing size,while the mortality of deciduous broadleaf species was mainly influenced by biotic factors,such as initial diameter at breast height(DBH)and conspecific negative density.For shade-tolerant species,the mortality of small individuals was mainly determined by initial DBH and conspecific negative density dependence,whereas the mortality of large individuals was subjected to the combined effect of biotic(competition from neighbours)and abiotic factors(i.e.,convexity and pH).As for shade-intolerant species,competition from neighbours was found to be the main driver of tree mortality throughout their growth stages.Thus,these insights enhance our understanding of forest dynamics by revealing the size-dependent and PFT-specific tree mortality patterns,which may inform strategies for maintaining forest diversity and resilience in temperate forest ecosystems.展开更多
This work provides a new multimodal fusion generative adversarial net(GAN)model,Multiple Conditions Transform W-net(MCSTransWnet),which primarily uses femtosecond laser arcuate keratotomy surgical parameters and preop...This work provides a new multimodal fusion generative adversarial net(GAN)model,Multiple Conditions Transform W-net(MCSTransWnet),which primarily uses femtosecond laser arcuate keratotomy surgical parameters and preoperative corneal topography to predict postoperative corneal topography in astigmatism-corrected patients.The MCSTransWnet model comprises a generator and a discriminator,and the generator is composed of two sub-generators.The first sub-generator extracts features using the U-net model,vision transform(ViT)and a multi-parameter conditional module branch.The second sub-generator uses a U-net network for further image denoising.The discriminator uses the pixel discriminator in Pix2Pix.Currently,most GAN models are convolutional neural networks;however,due to their feature extraction locality,it is difficult to comprehend the relationships among global features.Thus,we added a vision Transform network as the model branch to extract the global features.It is normally difficult to train the transformer,and image noise and geometric information loss are likely.Hence,we adopted the standard U-net fusion scheme and transform network as the generator,so that global features,local features,and rich image details could be obtained simultaneously.Our experimental results clearly demonstrate that MCSTransWnet successfully predicts postoperative corneal topographies(structural similarity=0.765,peak signal-to-noise ratio=16.012,and Fréchet inception distance=9.264).Using this technique to obtain the rough shape of the postoperative corneal topography in advance gives clinicians more references and guides changes to surgical planning and improves the success rate of surgery.展开更多
Semiconductor materials exemplify humanity's unwavering pursuit of enhanced performance,efficiency,and functionality in electronic devices.From its early iterations to the advanced variants of today,this field has...Semiconductor materials exemplify humanity's unwavering pursuit of enhanced performance,efficiency,and functionality in electronic devices.From its early iterations to the advanced variants of today,this field has undergone an extraordinary evolution.As the reliability requirements of integrated circuits continue to increase,the industry is placing greater emphasis on the crystal qualities.Consequently,conducting a range of characterization tests on the crystals has become necessary.This paper will examine the correlation between crystal quality,device performance,and production yield,emphasizing the significance of crystal characterization tests and the important role of high-precision synchrotron radiation X-ray topography characterization in semiconductor analysis.Finally,we will cover the specific applications of synchrotron radiation characterization in the development of semiconductor materials.展开更多
基金The study is funded by the Cooperation Project of China National Petroleum Company(CNPC)and China University of Petroleum-Beijing(CUPB)(No.RIPED-2021-JS-552)the National Natural Science Foundation of China(Nos.42002112,42272110)+2 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-02)the Science Foundation for Youth Scholars of CUPB(No.24620222BJRC006)We thank the China Scholarship Council(CSC)(No.202106440048)for having funded the research stay of Mei Chen at MARUM,University of Bremen.We thank Elda Miramontes for her constructive comments and suggestions that helped us improve our manuscript.
文摘Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
文摘Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord.Under normal conditions,maintenance of this complex system is structurally and functionally supported by astrocytes (ACs)and other glial cells,the processes of which form a framework surrounding neuronal cell bodies,dendrites,axons,and synapses.
基金Supported by the National Key Research and Development Program of China(No.2022YFE0204600)the National Natural Science Foundation for Young Scientists of China(No.41906157)。
文摘Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.
文摘This study describes the floristic composition and structure of a woody stand in the Senegalese Sahel, paying particular attention to the edaphic factors of its floristic composition. A stratified inventory considering the different relief units was adopted. Woody vegetation was surveyed using a dendrometric approach. The results obtained show that the flora is dominated by a few species adapted to drought, such as Balanites aegyptiaca (L.) Del., Calotropis procera Ait. and Boscia senegalensis (Pers.). The distribution of this flora and the structure of the ligneous plants are linked to the topography. In the lowlands, the flora is more diversified and the ligneous plants reach their optimum level of development compared with the higher relief areas. In the lowlands, there are a few woody species which, in the past, were indicative of better climatic conditions. These are Anogeissus leiocarpus (DC.), Commiphora africana (A. Rich.), Feretia apodanthera Del., Loeseneriella africana (A. Smith), Mitragyna inermis (Willd.) and Sclerocarya birrea (A. Rich). It is important that their reintroduction into reforestation projects takes account of their edaphic preference.
基金supported by the National Natural Science Foundation of China(No.41790465).
文摘The finite difference method(FDM)is an important numerical approach for simulating the propagation of seismic waves,and some FDMs can be used to study the impact of the Earth’s curvature and topography over large distances.To efficiently model the effects of the Earth’s irregular topography on the propagation of seismic waves,here we optimize a previously proposed grid mesh method and develop a novel two-dimensional boundary-conforming FDM based on a curvilinear polar coordinate system.This method efficiently simulates the propagation of seismic waves in an arc-shaped model with large variations in surface topography.Our method was benchmarked against other reported methods using several global-scale models.The consistency of the results confirms the validity of our proposed optimization strategy.Furthermore,our findings indicate that the proposed optimization strategy improves computational efficiency.
基金Project(20120321028-01)supported by Scientific and Technological Key Project of Shanxi Province,ChinaProject(20113101)supported by Postgraduate Innovative Key Project of Shanxi Province,China
文摘New adaptive preprocessing algorithms based on the polar coordinate system were put forward to get high-precision corneal topography calculation results. Adaptive locating algorithms of concentric circle center were created to accurately capture the circle center of original Placido-based image, expand the image into matrix centered around the circle center, and convert the matrix into the polar coordinate system with the circle center as pole. Adaptive image smoothing treatment was followed and the characteristics of useful circles were extracted via horizontal edge detection, based on useful circles presenting approximate horizontal lines while noise signals presenting vertical lines or different angles. Effective combination of different operators of morphology were designed to remedy data loss caused by noise disturbances, get complete image about circle edge detection to satisfy the requests of precise calculation on follow-up parameters. The experimental data show that the algorithms meet the requirements of practical detection with characteristics of less data loss, higher data accuracy and easier availability.
基金supported by North Pacific Research Board(NPRB),project No 828,contribution No 204AMSTEC,Japan,through the sponsorship of IARC+1 种基金The study was also supported by the NSF Award 0629311 and RFFI Grant 06-05-96065Nikolai Maximenko was partly supported by NASA through membership in its Ocean Surface Topography Science Team.
文摘The Bering Sea circulation is derived as a variational inverse of hydrographic profiles( temperature and salinity) , atmospheric climatologies and historical observation of ocean curents. The important result of this study is estimate of the mean climatological sea surface height (SSH) that can be used as a reference for satellite altimetry sea level anomaly data in the Bering Sea region. Numerical experiments reveal that, when combined with satellite altimetry, the obtained reference SSH effectively constrains a realistic reconstruction of the Amukta Pass circulation.
基金The National Natural Science Foundation of China under contract Nos 51839002 and U2006207.
文摘Compared to single-polarization synthetic aperture radar(SAR)data,fully polarimetric SAR data can provide more detailed information of the sea surface,which is important for applications such as shallow sea topography detection.The Gaofen-3 satellite provides abundant polarimetric SAR data for ocean research.In this paper,a shallow sea topography detection method was proposed based on fully polarimetric Gaofen-3 SAR data.This method considers swell patterns and only requires SAR data and little prior knowledge of the water depth to detect shallow sea topography.Wave tracking was performed based on preprocessed fully polarimetric SAR data,and the water depth was then calculated considering the wave parameters and the linear dispersion relationships.In this paper,four study areas were selected for experiments,and the experimental results indicated that the polarimetric scattering parameterαhad higher detection accuracy than quad-polarization images.The mean relative errors were 14.52%,10.30%,12.56%,and 12.90%,respectively,in the four study areas.In addition,this paper also analyzed the detection ability of this model for different topographies,and the experiments revealed that the topography could be well recognized when the topography gradient is small,the topography gradient direction is close to the wave propagation direction,and the isobath line is regular.
基金the financial support by the National Natural Science Foundation of China(No.52176212).
文摘The typical location and number of anemometer towers in the assessed area are the key to the accuracy of wind resource assessment in complex topography.As calculation examples,this paper used two typical complex topography wind farms in Guangxi,Yunnan province in China.Firstly,we simulated the wind resource status of the anemometer tower in the Meteodyn WT software.Secondly,we compared the simulated wind resource with the actual measured data by the anemometer tower in the same situation.Thirdly,we analyzed the influence of anemometer tower location and quantity in the accuracy of wind resource assessment through the comparison results.The results showed that the range which the anemometer tower can represent is limited(<5 kilometers),and the prediction error more than 5%.Besides,the anemometer towers in special terrain areas(such as wind acceleration areas)cannot be used as a representative choice.The relative error of the simulated average annual wind speed by choose different number of anemometer towers is about 4%,and the grid-connected power generation more than 6%.The representative effect of anemometer towers is of crucial for improving the accuracy of wind resource assessment in engineering applications.
基金Projects(50975237,51005184) supported by the National Natural Science Foundation of China
文摘High-speed milling of titanium alloys is widely used in aviation and aerospace industries for its high efficiency and good quality.In order to optimize the machining parameters in high-speed milling TB6 titanium alloy,experiments of high-speed milling and fatigue were conducted to investigate the effect of parameters on 3D surface topography and fatigue life.Based on the fatigue fracture,the effect mechanism of surface topography on the fatigue crack initiation was proposed.The experiment results show that when the milling speed ranged from 100 m/min to 140 m/min,and the feed per tooth ranged from 0.02 mm/z to 0.06 mm/z,the obtained surface roughness were within the limit(0.8 μm).Fatigue life decreased sharply with the increase of surface equivalent stress concentration factor.The average error of fatigue life between the established model and the experimental results was 6.25%.The fatigue cracks nucleated at the intersection edge of machined surface.
基金Supported by Education Department Foundation of Sichuan Province(No.15ZA0262).
文摘AIM:To present the 1-year results of a prospective cohort study investigating the efficacy,potential mechanism,and safety of orthokeratology(ortho-k)with different back optic zone diameters(BOZD)for myopia control in children.METHODS:This randomized clinical study was performed between Dec.2020 and Dec.2021.Participants were randomly assigned to three groups wearing ortho-k:5 mm BOZD(5-MM group),5.5 mm BOZD(5.5-MM group),and 6 mm BOZD(6-MM group).The 1-year data were recorded,including axial length,relative peripheral refraction(RPR,measured by multispectral refractive topography,MRT),and visual quality.The contrast sensitivity(CS)was evaluated by CSV-1000 instrument with spatial frequencies of 3,6,12,and 18 cycles/degree(c/d);the corneal higher-order aberrations(HOAs)were measured by iTrace aberration analyzer.The one-way ANOVA was performed to assess the differences between the three groups.The correlation between the change in AL and RPR was calculated by Pearson’s correlation coefficient.RESULTS:The 1-year results of 20,21,and 21 subjects in the 5-MM,5.5-MM,and 6-MM groups,respectively,were presented.There were no statistical differences in baseline age,sex,or ocular parameters between the three groups(all P>0.05).At the 1-year visit,the 5-MM group had lower axial elongation than the 6-MM group(0.07±0.09 vs 0.18±0.11 mm,P=0.001).The 5-MM group had more myopic total RPR(TRPR,P=0.014),with RPR in the 15°–30°(RPR 15–30,P=0.015),30°–45°(RPR 30–45,P=0.011),temporal(RPR-T,P=0.008),and nasal area(RPR-N,P<0.001)than the 6-MM group.RPR 15–30 in the 5.5-MM group was more myopic than that in the 6-MM group(P=0.002),and RPR-N in the 5-MM group was more myopic than that in the 5.5-MM group(P<0.001).There were positive correlations between the axial elongation and the change in TRPR(r=0.756,P<0.001),RPR 15–30(r=0.364,P=0.004),RPR 30–45(r=0.306,P=0.016),and RPR-N(r=0.253,P=0.047).The CS decreased at 3 c/d(P<0.001),and the corneal HOAs increased in the 5-MM group(P=0.030).CONCLUSION:Ortho-k with 5 mm BOZD can control myopia progression more effectively.The mechanism may be associated with greater myopic shifts in RPR.
基金financially supported by the National High Technology Research and Development Program of China(No.2012AA09A20105)the National Science Foundation Network(No.41574127)
文摘We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff botmdary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.
基金supported by National Basic Research Program of China(Grant Nos.2013CBA01804 and 2012CB957702)the Chinese Polar Environmental Comprehensive Investigation and Assessment Programs(Grant No.CHINARE-02-02)the National Science Foundation of China(Grant No.41101071)
文摘As fundamental parameters of the Antarctic Ice Sheet,ice thickness and subglacial topography are critical factors for studying the basal conditions and mass balance in Antarctica.During CHINARE 24(the 24 th Chinese National Antarctic Research Expedition,2007/08),the research team used a deep ice-penetrating radar system to measure the ice thickness and subglacial topography of the "Chinese Wall" around Kunlun Station,East Antarctica.Preliminary results show that the ice thickness varies mostly from 1600 m to 2800 m along the "Chinese Wall",with the thickest ice being 3444 m,and the thinnest ice 1255 m.The average bedrock elevation is 1722 m,while the minimum is just 604 m.Compared with the northern side of the ice divide,the ice thickness is a little greater and the subglacial topography lower on the southern side,which is also characterized by four deep valleys.We found no basal freeze-on ice in the Gamburtsev Subglacial Mountains area,subglacial lakes,or water bodies along the "Chinese Wall".Ice thickness and subglacial topography data extracted from the Bedmap 2 database along the "Chinese Wall" are consistent with our results,but their resolution and accuracy are very limited in areas where the bedrock fluctuates intensely.The distribution of ice thickness and subglacial topography detected by ice-penetrating radar clarifies the features of the ice sheet in this "inaccessible" region.These results will help to advance the study of ice sheet dynamics and the determination of future locations of the GSM's geological and deep ice core drilling sites in the Dome A region.
基金sponsored by the National 973 Program of China(Grant No.2009CB219505)International Science&Technology Cooperation Program of China(Grant No.2010DFA21630)
文摘In order to eliminate the effect of ocean bottom topography on seismic wave field,we transformed curved(x,z)coordinate system grids into rectangular(ξ,η)coordinate system grids and derived a 2-D scalar acoustic wave equation in theξ,ηdomain.The seismic wave field collected at the sea surface was downward continued to the ocean bottom by the inverse finite difference method with the water velocity and then was reversely continued to the ocean surface by the finite difference method using the layer velocity from just below the ocean bottom in the(ξ,η)domain.Simulation calculations and practical application show that this method can not only remove the reflection travel time distortion but also correct the dynamic parameter changes caused by the ocean bottom topography.The inverted velocity after wave field continuation is much more accurate than before continuation and the image section was greatly improved compared to the original wave field.
基金supported by the Hong Kong GRF RGC project 15217222:“Modernization of the leveling network in the Hong Kong territories”。
文摘Utilizing the adopted average topographic density of 2670 kg/m^(3)in the reduction of gravity anomalies introduces errors attributed to topographic density variations,which consequently affect geoid modeling accuracy.Furthermore,the mean gravity along the plumbline within the topography in the definition of Helmert orthometric heights is computed approximately by applying the Poincar e-Prey gravity reduction where the topographic density variations are disregarded.The Helmert orthometric heights of benchmarks are then affected by errors.These errors could be random or systematic depending on the specific geological setting of the region where the leveling network is physically established and/or the geoid model is determined.An example of systematic errors in orthometric heights can be given for large regions characterized by sediment or volcanic deposits,the density of which is substantially lower than the adopted topographic density used in Helmert's definition of heights.The same applies to geoid modeling errors.In this study,we investigate these errors in the Hong Kong territory,where topographic density is about 20%lower than the density of 2670 kg/m^(3).We use the digital rock density model to estimate the effect of topographic density variations on the geoid and orthometric heights.Our results show that this effect on the geoid and Helmert orthometric heights reach maxima of about 2.1 and 0.5 cm,respectively.Both results provide clear evidence that rock density models are essential in physical geodesy applications involving gravimetric geoid modeling and orthometric height determination despite some criticism that could be raised regarding the reliability of these density models.However,in regions dominated by sedimentary and igneous rocks,the geological information is essential in these applications because topographic densities are substantially lower than the average density of 2670 kg/m^(3),thus introducing large systematic errors in geoid and orthometric heights.
基金Project supported by JST-PRESTO (Grant No.JPMJPR1871)JST-FOREST (Grant No.JPMJFR2033)+2 种基金JST-ERATO (Grant No.JPMJER2202)KAKENHI JSPS (Grant Nos.JP19H05788,JP21H01614,and JP24H00373)“Next Generation Electron Microscopy”social cooperation program at the University of Tokyo。
文摘One of the major innovations awaiting in electron microscopy is full three-dimensional imaging at atomic resolution.Despite the success of aberration correction to deep sub-angstrom lateral resolution,spatial resolution in depth is still far from atomic resolution.In scanning transmission electron microscopy(STEM),this poor depth resolution is due to the limitation of the illumination angle.To overcome this physical limitation,it is essential to implement a next-generation aberration corrector in STEM that can significantly improve the depth resolution.This review discusses the capability of depth sectioning for three-dimensional imaging combined with large-angle illumination STEM.Furthermore,the statistical analysis approach remarkably improves the depth resolution,making it possible to achieve three-dimensional atomic resolution imaging at oxide surfaces.We will also discuss the future prospects of three-dimensional imaging at atomic resolution by STEM depth sectioning.
基金supported by the China Postdoctoral Science Foundation (No.2023M733712)the National Natural Science Foundation of China (No.31971491)。
文摘Tree mortality significantly influences forest structure and function,yet our understanding of its dynamic patterns among a range of tree sizes and among different plant functional types(PFTs)remains incomplete.This study analysed size-dependent tree mortality in a temperate forest,encompassing 46 tree species and 32,565 individuals across different PFTs(i.e.,evergreen conifer vs.deciduous broadleaf species,shade-tolerant vs.shade-intolerant species).By employing all-subset regression procedures and logistic generalized linear mixed-effects models,we identified distinct mortality patterns influenced by biotic and abiotic factors.Our results showed a stable mortality patte rn in eve rgreen conifer species,contrasted by a declining pattern in deciduous broadleaf and shadetolerant,as well as shade-intolerant species,across size classes.The contribution to tree mortality of evergreen conifer species shifted from abiotic to biotic factors with increasing size,while the mortality of deciduous broadleaf species was mainly influenced by biotic factors,such as initial diameter at breast height(DBH)and conspecific negative density.For shade-tolerant species,the mortality of small individuals was mainly determined by initial DBH and conspecific negative density dependence,whereas the mortality of large individuals was subjected to the combined effect of biotic(competition from neighbours)and abiotic factors(i.e.,convexity and pH).As for shade-intolerant species,competition from neighbours was found to be the main driver of tree mortality throughout their growth stages.Thus,these insights enhance our understanding of forest dynamics by revealing the size-dependent and PFT-specific tree mortality patterns,which may inform strategies for maintaining forest diversity and resilience in temperate forest ecosystems.
基金National Natural Science Foundation of China(Grant numbers 11872262,12172243,and 12072218)Research Funds of Shanxi Transformation and Comprehensive Reform Demonstration Zone(Grant number 2018KJCX04)+7 种基金Fund for Shanxi“1331 Project”and supported by the Fundamental Research Program of Shanxi Province(Grant number 202203021211006)Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialties(Grant number SZGSP014)Sanming Project of Medicine in Shenzhen(Grant number SZSM202011015)Shenzhen Fundamental Research Program(Grant number JCYJ20220818103207015)Shenzhen Science and Technology Program(Grant number JCYJ20220530153604010)Medical Major Research Projects in Shanxi Province(Grant number 2021XM11)Scientific Innovation Plan of the Universities in Shanxi Province(Grant number 2021L575)Shanxi Scholarship Council of China(Grant number 2020-149).
文摘This work provides a new multimodal fusion generative adversarial net(GAN)model,Multiple Conditions Transform W-net(MCSTransWnet),which primarily uses femtosecond laser arcuate keratotomy surgical parameters and preoperative corneal topography to predict postoperative corneal topography in astigmatism-corrected patients.The MCSTransWnet model comprises a generator and a discriminator,and the generator is composed of two sub-generators.The first sub-generator extracts features using the U-net model,vision transform(ViT)and a multi-parameter conditional module branch.The second sub-generator uses a U-net network for further image denoising.The discriminator uses the pixel discriminator in Pix2Pix.Currently,most GAN models are convolutional neural networks;however,due to their feature extraction locality,it is difficult to comprehend the relationships among global features.Thus,we added a vision Transform network as the model branch to extract the global features.It is normally difficult to train the transformer,and image noise and geometric information loss are likely.Hence,we adopted the standard U-net fusion scheme and transform network as the generator,so that global features,local features,and rich image details could be obtained simultaneously.Our experimental results clearly demonstrate that MCSTransWnet successfully predicts postoperative corneal topographies(structural similarity=0.765,peak signal-to-noise ratio=16.012,and Fréchet inception distance=9.264).Using this technique to obtain the rough shape of the postoperative corneal topography in advance gives clinicians more references and guides changes to surgical planning and improves the success rate of surgery.
基金This work was supported by Youth Innovation Promotion Association CAS,National Natural Science Foundation of China(Grant No.11705263)Shanghai Rising-Star Program(Grant No.21QA1410900)。
文摘Semiconductor materials exemplify humanity's unwavering pursuit of enhanced performance,efficiency,and functionality in electronic devices.From its early iterations to the advanced variants of today,this field has undergone an extraordinary evolution.As the reliability requirements of integrated circuits continue to increase,the industry is placing greater emphasis on the crystal qualities.Consequently,conducting a range of characterization tests on the crystals has become necessary.This paper will examine the correlation between crystal quality,device performance,and production yield,emphasizing the significance of crystal characterization tests and the important role of high-precision synchrotron radiation X-ray topography characterization in semiconductor analysis.Finally,we will cover the specific applications of synchrotron radiation characterization in the development of semiconductor materials.