In this paper,we study the relationship between the multi-sensitivity and the topological maximal sequence entropy of dynamical systems for general group action.Furthermore,we also discuss the consistency of multi-sen...In this paper,we study the relationship between the multi-sensitivity and the topological maximal sequence entropy of dynamical systems for general group action.Furthermore,we also discuss the consistency of multi-sensitivity of a dynamical system(G■X)and its hyperspace dynamical system G■K(X).Moreover,we research the relationship between the multi-sensitivity of two dynamical systems and the multi-sensitivity of their product space dynamical system.Finally,we prove that if the topological sequence entropy of G■X vanishes,then so does that of its induced system G■M(X);if the topological sequence entropy of G■X is positive,then that of its induced system G■M(X)is infinity.展开更多
Extending previous results of Grosse-Erdmann and Peris we obtain a characterization of chaotic unilateral weighted backward shifts on sequentially complete topological sequence spaces in which the canonical unit vecto...Extending previous results of Grosse-Erdmann and Peris we obtain a characterization of chaotic unilateral weighted backward shifts on sequentially complete topological sequence spaces in which the canonical unit vectors(e_(n))_(n=1)^(∞) form an unconditional basis.展开更多
Let X be a compact metric space and T:X-→X be continuous.Let h*(T)be the supremum of topological sequence entropies of T over all the subsequences of Z+and S(X)be the set of the values h*(T)for all the continuous map...Let X be a compact metric space and T:X-→X be continuous.Let h*(T)be the supremum of topological sequence entropies of T over all the subsequences of Z+and S(X)be the set of the values h*(T)for all the continuous maps T on X.It is known that{0}■S(X)■{0,log 2,log 3,...}∪{∞}.Only three possibilities for S(X)have been observed so far,namely S(X)={0},S(X)={0,log 2,∞}and S(X)={0,log 2,log 3,...}∪{∞}.In this paper we completely solve the problem of finding all possibilities for S(X)by showing that in fact for every set{0}?A?{0,log 2,log 3,...}∪{∞}there exists a one-dimensional continuum XAwith S(XA)=A.In the construction of XAwe use Cook continua.This is apparently the first application of these very rigid continua in dynamics.We further show that the same result is true if one considers only homeomorphisms rather than continuous maps.The problem for group actions is also addressed.For some class of group actions(by homeomorphisms)we provide an analogous result,but in full generality this problem remains open.展开更多
A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an u...A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an uncountable subset in which any two different points have trajectory approaching time set with lower density p and upper density q. In this paper, we show that there is a null system which is also D3/41/4 chaotic.展开更多
基金Supported by NSF of China (Grant No.11671057)NSF of Chongqing (Grant No.cstc2020jcyj-msxm X0694)。
文摘In this paper,we study the relationship between the multi-sensitivity and the topological maximal sequence entropy of dynamical systems for general group action.Furthermore,we also discuss the consistency of multi-sensitivity of a dynamical system(G■X)and its hyperspace dynamical system G■K(X).Moreover,we research the relationship between the multi-sensitivity of two dynamical systems and the multi-sensitivity of their product space dynamical system.Finally,we prove that if the topological sequence entropy of G■X vanishes,then so does that of its induced system G■M(X);if the topological sequence entropy of G■X is positive,then that of its induced system G■M(X)is infinity.
基金Supported by Research Program of Science at Universities of Inner Mongolia Autonomous Region(Grant No.NJZY22328)。
文摘Extending previous results of Grosse-Erdmann and Peris we obtain a characterization of chaotic unilateral weighted backward shifts on sequentially complete topological sequence spaces in which the canonical unit vectors(e_(n))_(n=1)^(∞) form an unconditional basis.
基金supported by the Slovak Research and Development Agency (Grant No. APVV-15-0439)by VEGA (Grant No. 1/0786/15)+1 种基金supported by National Natural Science Foundation of China (Grant Nos. 11371339 and 11431012)supported by National Natural Science Foundation of China (Grant Nos. 11871188 and 11671094)
文摘Let X be a compact metric space and T:X-→X be continuous.Let h*(T)be the supremum of topological sequence entropies of T over all the subsequences of Z+and S(X)be the set of the values h*(T)for all the continuous maps T on X.It is known that{0}■S(X)■{0,log 2,log 3,...}∪{∞}.Only three possibilities for S(X)have been observed so far,namely S(X)={0},S(X)={0,log 2,∞}and S(X)={0,log 2,log 3,...}∪{∞}.In this paper we completely solve the problem of finding all possibilities for S(X)by showing that in fact for every set{0}?A?{0,log 2,log 3,...}∪{∞}there exists a one-dimensional continuum XAwith S(XA)=A.In the construction of XAwe use Cook continua.This is apparently the first application of these very rigid continua in dynamics.We further show that the same result is true if one considers only homeomorphisms rather than continuous maps.The problem for group actions is also addressed.For some class of group actions(by homeomorphisms)we provide an analogous result,but in full generality this problem remains open.
基金supported by National Natural Science Foundation of China (Grant No.11071084)Natural Science Foundation of Guangdong Province (Grant No. 10451063101006332)
文摘A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an uncountable subset in which any two different points have trajectory approaching time set with lower density p and upper density q. In this paper, we show that there is a null system which is also D3/41/4 chaotic.