期刊文献+
共找到2,908篇文章
< 1 2 146 >
每页显示 20 50 100
A novel flexible nerve guidance conduit promotes nerve regeneration while providing excellent mechanical properties
1
作者 Tong Li Quhan Cheng +11 位作者 Jingai Zhang Boxin Liu Yu Shi Haoxue Wang Lijie Huang Su Zhang Ruixin Zhang Song Wang Guangxu Lu Peifu Tang Zhongyang Liu Kai Wang 《Neural Regeneration Research》 SCIE CAS 2025年第7期2084-2094,共11页
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit... Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries. 展开更多
关键词 aligned fibers anti-kinking helical fibers nerve guidance conduit nerve regeneration peripheral nerve injury topological guidance
下载PDF
Web Layout Design of Large Cavity Structures Based on Topology Optimization 被引量:1
2
作者 Xiaoqiao Yang Jialiang Sun Dongping Jin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2665-2689,共25页
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas... Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures. 展开更多
关键词 Topology optimization lightweight design web layout design cavity structure
下载PDF
Multi-Material Topology Optimization for Spatial-Varying Porous Structures 被引量:1
3
作者 Chengwan Zhang Kai Long +4 位作者 Zhuo Chen Xiaoyu Yang Feiyu Lu Jinhua Zhang Zunyi Duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期369-390,共22页
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu... This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures. 展开更多
关键词 Topology optimization porous structures local volume fraction augmented lagrangian multiple materials
下载PDF
Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
4
作者 沈云峰 许孝芳 +2 位作者 孙铭 周文佶 常雅箐 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期480-491,共12页
We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell stru... We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system. 展开更多
关键词 valley photonic crystal topological edge states topological corner states higher-order topological insulators topological phase transition
下载PDF
Topological superconductors with spin-triplet pairings and Majorana Fermi arcs
5
作者 黄石 罗熙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期453-458,共6页
We construct a three-dimensional topological superconductor Bogoliubov–de Gennes(BdG)Hamiltonian with the normal state being a three-dimensional topological insulator.By introducing inter-orbital spin-triplet pairing... We construct a three-dimensional topological superconductor Bogoliubov–de Gennes(BdG)Hamiltonian with the normal state being a three-dimensional topological insulator.By introducing inter-orbital spin-triplet pairings term△3,there are topological Majorana nodes in the bulk and they are connected by Majorana Fermi arcs on the surface,similar to the case of Weyl semimetal.Furthermore,by adding an inversion-breaking term to the normal state,momentum-independent pairing terms with different parities can coexist in the Bd G Hamiltonian,which creates more Majorana modes similar to Andreev bound states and a richer phase diagram. 展开更多
关键词 topological surface states topological superconductors topological nodes Weyl points Majorana Fermi arcs
下载PDF
Interacting topological magnons in a checkerboard ferromagnet
6
作者 朱恒 施洪潮 +1 位作者 唐政国 唐炳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期596-601,共6页
This work is devoted to studying the magnon-magnon interaction effect in a two-dimensional checkerboard ferromagnet with the Dzyaloshinskii-Moriya interaction.Using a first-order Green function method,we analyze the i... This work is devoted to studying the magnon-magnon interaction effect in a two-dimensional checkerboard ferromagnet with the Dzyaloshinskii-Moriya interaction.Using a first-order Green function method,we analyze the influence of magnon-magnon interaction on the magnon band topology.We find that Chern numbers of two renormalized magnon bands are different above and below the critical temperature,which means that the magnon band gap-closing phenomenon is an indicator for one topological phase transition of the checkerboard ferromagnet.Our results show that the checkerboard ferromagnet possesses two topological phases,and its topological phase can be controlled either via the temperature or the applied magnetic field due to magnon-magnon interactions.Interestingly,it is found that the topological phase transition can occur twice with the increase in the temperature,which is different from the results of the honeycomb ferromagnet. 展开更多
关键词 topological magnons magnon-magnon interactions topological phase transitions checkerboard ferromagnets
下载PDF
Topological phases and edge modes of an uneven ladder
7
作者 商文创 韩熠宁 +1 位作者 Shimpei Endo 高超 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期154-168,共15页
We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by t... We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps.It also provides opportunities to explore fundamental concepts concerning band topology and edge modes,including the difference of intracellular and intercellular Zak phases,and the role of the inversion symmetry(IS).We calculate the Zak phases of the two kinds and find excellent agreement with the dipole moment and extra charge accumulation.We also find that configurations with IS feature a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap,while configurations without IS feature one-side edge modes emerging as not only the closure of both direct and indirect bandgaps but also within the band continuum.Furthermore,by projecting to the two sublattices,we find that the effective Bloch Hamiltonian corresponds to that of a generalized Su–Schrieffer–Heeger model or the Rice–Mele model whose hopping amplitudes depend on the quasimomentum.In this way,the topological phases can be efficiently extracted through winding numbers.We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich topological characteristics can be examined by near future experiments. 展开更多
关键词 ladder model symmetry-protected topological phase topological invariant bulk-boundary correspondence
下载PDF
Progress and realization platforms of dynamic topological photonics
8
作者 闫秋辰 马睿 +1 位作者 胡小永 龚旗煌 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期75-87,共13页
Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have bee... Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects. 展开更多
关键词 dynamic topological photonics optical waveguide array topological optical lattice ultrafast spectroscopy
下载PDF
From 0D to 3D:Hierarchical structured high-performance free-standing silicon anodes based on binder-induced topological network architecture
9
作者 Yihong Tong Ruicheng Cao +4 位作者 Guanghui Xu Yifeng Xia Hongyuan Xu Hong Jin Hui Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期16-23,I0002,共9页
Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal ... Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges. 展开更多
关键词 Topological network SELF-STABILIZATION FLEXIBILITY FREE-STANDING Silicon anode
下载PDF
Polarization pinning at antiphase boundaries in multiferroic YbFeO_(3)
10
作者 Guodong Ren Pravan Omprakash +4 位作者 Xin Li Yu Yun Arashdeep S.Thind Xiaoshan Xu Rohan Mishra 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期39-45,共7页
The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain walls.We report on the pinning of polarization due to antiphase boundaries in thin... The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain walls.We report on the pinning of polarization due to antiphase boundaries in thin films of the multiferroic hexagonal YbFeO_(3).We have directly resolved the atomic structure of a sharp antiphase boundary(APB)in YbFeO_(3) thin films using a combination of aberration-corrected scanning transmission electron microscopy(STEM)and total energy calculations based on density-functional theory(DFT).We find the presence of a layer of FeO_(6) octahedra at the APB that bridges the adjacent domains.STEM imaging shows a reversal in the direction of polarization on moving across the APB,which DFT calculations confirm is structural in nature as the polarization reversal reduces the distortion of the FeO_(6) octahedral layer at the APB.Such APBs in hexagonal perovskites are expected to serve as domain-wall pinning sites and hinder ferroelectric switching of the domains. 展开更多
关键词 hexagonal ferrites FERROELECTRIC MULTIFERROIC topological defect STEM
下载PDF
Majorana noise model and its influence on the power spectrum
11
作者 陈书梦 丁思凡 +1 位作者 张振涛 刘东 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期637-646,共10页
Majorana quantum computation offers a potential approach to securely manipulating and storing quantum data in a topological manner that may effectively resist the decoherence induced by local noise. However, actual Ma... Majorana quantum computation offers a potential approach to securely manipulating and storing quantum data in a topological manner that may effectively resist the decoherence induced by local noise. However, actual Majorana qubit setups are susceptible to noise. In this study, from a quantum dynamics perspective, we develop a noise model for Majorana qubits that accounts for quasi-particle poisoning and Majorana overlapping with fluctuation. Furthermore, we focus on Majorana parity readout methodologies, specifically those leveraging an ancillary quantum dot, and carry out an indepth exploration of continuous measurement techniques founded on the quantum jump model of a quantum point contact.Utilizing these methodologies, we proceed to analyze the influence of noise on the afore-mentioned noise model, employing numerical computation to evaluate the power spectrum and frequency curve. In the culmination of our study, we put forward a strategy to benchmark the presence and detailed properties of noise in Majorana qubits. 展开更多
关键词 Majorana zero mode topological quantum computation topological devices decoherence and noise in qubits
下载PDF
Attribute Reduction on Decision Tables Based on Hausdorff Topology
12
作者 Nguyen Long Giang Tran Thanh Dai +3 位作者 Le Hoang Son Tran Thi Ngan Nguyen Nhu Son Cu Nguyen Giap 《Computers, Materials & Continua》 SCIE EI 2024年第11期3097-3124,共28页
Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relations... Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relationship between RS and topology spaces for the attribute reduction problem.However,the mentioned recent methods followed a strategy to construct a new measure for attribute selection.Meanwhile,the strategy for searching for the reduct is still to select each attribute and gradually add it to the reduct.Consequently,those methods tended to be inefficient for high-dimensional datasets.To overcome these challenges,we use the separability property of Hausdorff topology to quickly identify distinguishable attributes,this approach significantly reduces the time for the attribute filtering stage of the algorithm.In addition,we propose the concept of Hausdorff topological homomorphism to construct candidate reducts,this method significantly reduces the number of candidate reducts for the wrapper stage of the algorithm.These are the two main stages that have the most effect on reducing computing time for the attribute reduction of the proposed algorithm,which we call the Cluster Filter Wrapper algorithm based on Hausdorff Topology.Experimental validation on the UCI Machine Learning Repository Data shows that the proposed method achieves efficiency in both the execution time and the size of the reduct. 展开更多
关键词 Hausdorff topology rough sets topology from rough sets attribute reduction
下载PDF
Ultra-broadband and wide-angle reflective terahertz polarization conversion metasurface based on topological optimization
13
作者 Ya-Jie Zhang Chao-Long Li +3 位作者 Jia-Qi Luan Ming Zhao Ding-Shan Gao Pei-Li Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期287-294,共8页
Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the m... Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the metasurface unit cellsand design a reflective linear polarization conversion metasurface with ultra-broadband and wide-angle characteristics.By partitioning the metallic pattern layer into quadrants,the encoding length is effectively reduced,resulting in a shorteroptimization time.The research results indicate that the converter possesses a polarization conversion efficiency ratio higherthan 90%and a relative bandwidth ratio of 125%in a range of 0.231-0.995 THz.Meanwhile,it can maintain excellentpolarization conversion properties when the incident angle of terahertz waves is less than 45°and the polarization angle isless than 15°,demonstrating excellent practicality.New insights are provided for the design of terahertz wide-angle ultrawidebandpolarization conversion devices,and the proposed metasurfce has potential applications in terahertz polarizationimaging,spectroscopy and communication fields. 展开更多
关键词 metasurface polarization conversion topology optimization ULTRA-BROADBAND
下载PDF
Graph theoretical analysis of limestone fracture network damage patterns based on uniaxial compression test
14
作者 Mingyang Wang Congcong Wang +2 位作者 Enzhi Wang Xiaoli Liu Xiao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3485-3510,共26页
The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock m... The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock mass.The dynamical evolution of fracture networks under stress is crucial for unveiling the interaction patterns among fractures.However,existing models are undirected graphs focused on stationary topology,which need optimization to depict fractures'dynamic development and rupture process.To compensate for the time and destruction terms,we propose the damage network model,which defines the physical interpretation of fractures through the ternary motif.We focus primarily on the evolution of node types,topological attributes,and motifs of the fracture network in limestone under uniaxial stress.Observations expose the varying behavior of the nodes'self-dynamics and neighbors'adjacent dynamics in the fracture network.This approach elucidates the impact of micro-crack behaviors on large brittle shear fractures from a topological perspective and further subdivides the progressive failure stage into four distinct phases(isolated crack growth phase,crack splay phase,damage coalescence phase,and mechanical failure phase)based on the significance profile of the motif.Regression analysis reveals a positive linear and negative power correlation between fracture network density and branch number to the rock damage resistance,respectively.The damage network model introduces a novel methodology for depicting the interaction of two-dimensional(2D)projected fractures,considering the dynamic spatiotemporal development characteristics and fracture geometric variation.It helps dynamically characterize properties such as connectivity,permeability,and damage factors while comprehensively assessing damage in rock mass fracture networks. 展开更多
关键词 MOTIF Fracture network Topological property Damage resistance LIMESTONE
下载PDF
Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe_(2)
15
作者 李志磊 李殷翔 +2 位作者 王奕婷 陈文执 陈斌 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期437-442,共6页
Based on first-principles calculations,we investigate the electronic band structures and topological properties of heterostructure BiTeCl/HfTe_(2) under c-direction strain.In the primitive structure,this material unde... Based on first-principles calculations,we investigate the electronic band structures and topological properties of heterostructure BiTeCl/HfTe_(2) under c-direction strain.In the primitive structure,this material undergoes a phase transition from an insulator with a narrow indirect gap to a metal by strong spin-orbital coupling.When strain effect is considered,band inversion at time-reversal invariant point Z is responsible for the topological phase transition.These nontrivial topologies are caused by two different types of band crossings.The observable topological surface states in(110)surface also support that this material experiences topological phase transition twice.The layered heterostructure with van der Waals force provides us with a new desirable platform upon which to control topological phase transition and construct topological superconductors. 展开更多
关键词 topological phase transition surface states strain effect HETEROSTRUCTURE
下载PDF
Topological optimization of ballistic protective structures through genetic algorithms in a vulnerability-driven environment
16
作者 Salvatore Annunziata Luca Lomazzi +1 位作者 Marco Giglio Andrea Manes 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期125-137,共13页
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne... Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from. 展开更多
关键词 Topological optimization Protective structure Genetic algorithm SURVIVABILITY VULNERABILITY
下载PDF
Floquet-Engineering Topological Phase Transition in Graphene Nanoribbons by Light
17
作者 Anhua Huang Shasha Ke +2 位作者 Ji-Huan Guan Jun Li Wen-Kai Lou 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第9期69-87,共19页
Quasi-one-dimensional(1D)graphene nanoribbons(GNRs)play a crucial role in advancement of nextgeneration devices.Recent studies have suggested their potential to exhibit unique symmetry-protected topological phases def... Quasi-one-dimensional(1D)graphene nanoribbons(GNRs)play a crucial role in advancement of nextgeneration devices.Recent studies have suggested their potential to exhibit unique symmetry-protected topological phases defined by a Z_(2) invariant.By employing both the tight-binding model and the Floquet theory,our investigation demonstrates the effective control of the topological phase within quasi-1D armchair GNRs(AGNRs)using elliptically polarized light,unveiling rich topological phase diagrams.Specifically,we observe that varying the amplitude of the light can induce transitions in the band gap(E_(g))of AGNRs,leading to multiple changes in the system’s Z_(2) invariant.Furthermore,for heterojunctions composed of different AGNR segments,the junction state can be either created or eliminated by the application of elliptically polarized light. 展开更多
关键词 TOPOLOGICAL POLARIZED TRANSITION
下载PDF
Dynamic Resistance and Energy Absorption of Sandwich Beam via a Micro-Topology Optimization
18
作者 Shiqiang Li Yuwei Li +3 位作者 Xiaomin Ma Jianguang Fang Zhifang Liu Zhihua Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期146-162,共17页
The current research of sandwich structures under dynamic loading mainly focus on the response characteristic of structure.The micro-topology of core layers would sufficiently influence the property of sandwich struct... The current research of sandwich structures under dynamic loading mainly focus on the response characteristic of structure.The micro-topology of core layers would sufficiently influence the property of sandwich structure.However,the micro deformation and topology mechanism of structural deformation and energy absorption are unclear.In this paper,based on the bi-directional evolutionary structural optimization method and periodic base cell(PBC)technology,a topology optimization frame work is proposed to optimize the core layer of sandwich beams.The objective of the present optimization problem is to maximize shear stiffness of PBC with a volume constraint.The effects of the volume fraction,filter radius,and initial PBC aspect ratio on the micro-topology of the core were discussed.The dynamic response process,core compression,and energy absorption capacity of the sandwich beams under blast impact loading were analyzed by the finite element method.The results demonstrated that the overpressure action stage was coupled with the core compression stage.Under the same loading and mass per unit area,the sandwich beam with a 20%volume fraction core layer had the best blast resistance.The filter radius has a slight effect on the shear stiffness and blast resistances of the sandwich beams.But increasing the filter radius could slightly improve the bending stiffness.Upon changing the initial PBC aspect ratio,there are three ways for PBC evolution:The first is to change the angle between the adjacent bars,the second is to further form holes in the bars,and the third is to combine the first two ways.However,not all three ways can improve the energy absorption capacity of the structure.Changing the aspect ratio of the PBC arbitrarily may lead to worse results.More studies are necessary for further detailed optimization.This research proposes a new topology sandwich beam structure by micro-topology optimization,which has sufficient shear stiffness.The micro mechanism of structural energy absorption is clarified,it is significant for structural energy absorption design. 展开更多
关键词 Topology optimization Sandwich beam Impact loading Dynamic resistance Energy absorption Micro mechanism
下载PDF
Magnetic Topological Dirac Semimetal Transition Driven by SOC in EuMg_(2)Bi_(2)
19
作者 王佳萌 钱浩吉 +2 位作者 姜琦 乔山 叶茂 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第1期63-67,共5页
Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in ... Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in systems with broken time-reversal symmetry is crucial for realizing non-trivial quantum effects.We delve into the electronic structure of the rare-earth-based antiferromagnetic Dirac semimetal EuMg_(2)Bi_(2) using first-principles calculations and angle-resolved photoemission spectroscopy.Our calculations reveal that the spin-orbit coupling(SOC)in EuMg_(2)Bi_(2) prompts an insulator to topological semimetal transition,with the Dirac bands protected by crystal symmetries.The linearly dispersive states near the Fermi level,primarily originating from Bi 6p orbitals,are observed on both the(001)and(100)surfaces,confirming that EuMg_(2)Bi_(2) is a three-dimensional topological Dirac semimetal.This research offers pivotal insights into the interplay between magnetism,SOC and topological phase transitions in spintronics applications. 展开更多
关键词 SPECTROSCOPY TOPOLOGICAL DIRAC
下载PDF
Carrier-Density-Determined Magnetoresistance in Semimetal SrIrO_(3)
20
作者 Liang Yang Biao Wu +4 位作者 Xin Liu Mingyu Wang Congli He Shouguo Wang Jinxing Zhang 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第10期90-96,共7页
SrIrO_(3),a Dirac material with a strong spin-orbit coupling(SOC),is a platform for studying topological properties in strongly correlated systems,where its band structure can be modulated by multiple factors,such as ... SrIrO_(3),a Dirac material with a strong spin-orbit coupling(SOC),is a platform for studying topological properties in strongly correlated systems,where its band structure can be modulated by multiple factors,such as crystal symmetry,elements doping,oxygen vacancies,magnetic field,and temperature.Here,we find that the engineered carrier density plays a critical role on the magnetoelectric transport properties of the topological semimetal SrIrO_(3).The decrease of carrier density subdues the weak localization and the associated negative magnetoresistance,while enhancing the SOC-induced weak anti-localization.Notably,the sample with the lowest carrier density exhibits high-field positive magnetoresistance,suggesting the presence of a Dirac cone.In addition,the anisotropic magnetoresistance indicates the anisotropy of the electronic structure near the Fermi level.The engineering of carrier density provides a general strategy to control the Fermi surface and electronic structure in topological materials. 展开更多
关键词 TEMPERATURE materials TOPOLOGICAL
下载PDF
上一页 1 2 146 下一页 到第
使用帮助 返回顶部