Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit...Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.展开更多
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas...Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.展开更多
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu...This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.展开更多
We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell stru...We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system.展开更多
We construct a three-dimensional topological superconductor Bogoliubov–de Gennes(BdG)Hamiltonian with the normal state being a three-dimensional topological insulator.By introducing inter-orbital spin-triplet pairing...We construct a three-dimensional topological superconductor Bogoliubov–de Gennes(BdG)Hamiltonian with the normal state being a three-dimensional topological insulator.By introducing inter-orbital spin-triplet pairings term△3,there are topological Majorana nodes in the bulk and they are connected by Majorana Fermi arcs on the surface,similar to the case of Weyl semimetal.Furthermore,by adding an inversion-breaking term to the normal state,momentum-independent pairing terms with different parities can coexist in the Bd G Hamiltonian,which creates more Majorana modes similar to Andreev bound states and a richer phase diagram.展开更多
This work is devoted to studying the magnon-magnon interaction effect in a two-dimensional checkerboard ferromagnet with the Dzyaloshinskii-Moriya interaction.Using a first-order Green function method,we analyze the i...This work is devoted to studying the magnon-magnon interaction effect in a two-dimensional checkerboard ferromagnet with the Dzyaloshinskii-Moriya interaction.Using a first-order Green function method,we analyze the influence of magnon-magnon interaction on the magnon band topology.We find that Chern numbers of two renormalized magnon bands are different above and below the critical temperature,which means that the magnon band gap-closing phenomenon is an indicator for one topological phase transition of the checkerboard ferromagnet.Our results show that the checkerboard ferromagnet possesses two topological phases,and its topological phase can be controlled either via the temperature or the applied magnetic field due to magnon-magnon interactions.Interestingly,it is found that the topological phase transition can occur twice with the increase in the temperature,which is different from the results of the honeycomb ferromagnet.展开更多
We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by t...We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps.It also provides opportunities to explore fundamental concepts concerning band topology and edge modes,including the difference of intracellular and intercellular Zak phases,and the role of the inversion symmetry(IS).We calculate the Zak phases of the two kinds and find excellent agreement with the dipole moment and extra charge accumulation.We also find that configurations with IS feature a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap,while configurations without IS feature one-side edge modes emerging as not only the closure of both direct and indirect bandgaps but also within the band continuum.Furthermore,by projecting to the two sublattices,we find that the effective Bloch Hamiltonian corresponds to that of a generalized Su–Schrieffer–Heeger model or the Rice–Mele model whose hopping amplitudes depend on the quasimomentum.In this way,the topological phases can be efficiently extracted through winding numbers.We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich topological characteristics can be examined by near future experiments.展开更多
Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have bee...Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects.展开更多
Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal ...Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges.展开更多
The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain walls.We report on the pinning of polarization due to antiphase boundaries in thin...The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain walls.We report on the pinning of polarization due to antiphase boundaries in thin films of the multiferroic hexagonal YbFeO_(3).We have directly resolved the atomic structure of a sharp antiphase boundary(APB)in YbFeO_(3) thin films using a combination of aberration-corrected scanning transmission electron microscopy(STEM)and total energy calculations based on density-functional theory(DFT).We find the presence of a layer of FeO_(6) octahedra at the APB that bridges the adjacent domains.STEM imaging shows a reversal in the direction of polarization on moving across the APB,which DFT calculations confirm is structural in nature as the polarization reversal reduces the distortion of the FeO_(6) octahedral layer at the APB.Such APBs in hexagonal perovskites are expected to serve as domain-wall pinning sites and hinder ferroelectric switching of the domains.展开更多
Majorana quantum computation offers a potential approach to securely manipulating and storing quantum data in a topological manner that may effectively resist the decoherence induced by local noise. However, actual Ma...Majorana quantum computation offers a potential approach to securely manipulating and storing quantum data in a topological manner that may effectively resist the decoherence induced by local noise. However, actual Majorana qubit setups are susceptible to noise. In this study, from a quantum dynamics perspective, we develop a noise model for Majorana qubits that accounts for quasi-particle poisoning and Majorana overlapping with fluctuation. Furthermore, we focus on Majorana parity readout methodologies, specifically those leveraging an ancillary quantum dot, and carry out an indepth exploration of continuous measurement techniques founded on the quantum jump model of a quantum point contact.Utilizing these methodologies, we proceed to analyze the influence of noise on the afore-mentioned noise model, employing numerical computation to evaluate the power spectrum and frequency curve. In the culmination of our study, we put forward a strategy to benchmark the presence and detailed properties of noise in Majorana qubits.展开更多
Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relations...Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relationship between RS and topology spaces for the attribute reduction problem.However,the mentioned recent methods followed a strategy to construct a new measure for attribute selection.Meanwhile,the strategy for searching for the reduct is still to select each attribute and gradually add it to the reduct.Consequently,those methods tended to be inefficient for high-dimensional datasets.To overcome these challenges,we use the separability property of Hausdorff topology to quickly identify distinguishable attributes,this approach significantly reduces the time for the attribute filtering stage of the algorithm.In addition,we propose the concept of Hausdorff topological homomorphism to construct candidate reducts,this method significantly reduces the number of candidate reducts for the wrapper stage of the algorithm.These are the two main stages that have the most effect on reducing computing time for the attribute reduction of the proposed algorithm,which we call the Cluster Filter Wrapper algorithm based on Hausdorff Topology.Experimental validation on the UCI Machine Learning Repository Data shows that the proposed method achieves efficiency in both the execution time and the size of the reduct.展开更多
Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the m...Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the metasurface unit cellsand design a reflective linear polarization conversion metasurface with ultra-broadband and wide-angle characteristics.By partitioning the metallic pattern layer into quadrants,the encoding length is effectively reduced,resulting in a shorteroptimization time.The research results indicate that the converter possesses a polarization conversion efficiency ratio higherthan 90%and a relative bandwidth ratio of 125%in a range of 0.231-0.995 THz.Meanwhile,it can maintain excellentpolarization conversion properties when the incident angle of terahertz waves is less than 45°and the polarization angle isless than 15°,demonstrating excellent practicality.New insights are provided for the design of terahertz wide-angle ultrawidebandpolarization conversion devices,and the proposed metasurfce has potential applications in terahertz polarizationimaging,spectroscopy and communication fields.展开更多
The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock m...The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock mass.The dynamical evolution of fracture networks under stress is crucial for unveiling the interaction patterns among fractures.However,existing models are undirected graphs focused on stationary topology,which need optimization to depict fractures'dynamic development and rupture process.To compensate for the time and destruction terms,we propose the damage network model,which defines the physical interpretation of fractures through the ternary motif.We focus primarily on the evolution of node types,topological attributes,and motifs of the fracture network in limestone under uniaxial stress.Observations expose the varying behavior of the nodes'self-dynamics and neighbors'adjacent dynamics in the fracture network.This approach elucidates the impact of micro-crack behaviors on large brittle shear fractures from a topological perspective and further subdivides the progressive failure stage into four distinct phases(isolated crack growth phase,crack splay phase,damage coalescence phase,and mechanical failure phase)based on the significance profile of the motif.Regression analysis reveals a positive linear and negative power correlation between fracture network density and branch number to the rock damage resistance,respectively.The damage network model introduces a novel methodology for depicting the interaction of two-dimensional(2D)projected fractures,considering the dynamic spatiotemporal development characteristics and fracture geometric variation.It helps dynamically characterize properties such as connectivity,permeability,and damage factors while comprehensively assessing damage in rock mass fracture networks.展开更多
Based on first-principles calculations,we investigate the electronic band structures and topological properties of heterostructure BiTeCl/HfTe_(2) under c-direction strain.In the primitive structure,this material unde...Based on first-principles calculations,we investigate the electronic band structures and topological properties of heterostructure BiTeCl/HfTe_(2) under c-direction strain.In the primitive structure,this material undergoes a phase transition from an insulator with a narrow indirect gap to a metal by strong spin-orbital coupling.When strain effect is considered,band inversion at time-reversal invariant point Z is responsible for the topological phase transition.These nontrivial topologies are caused by two different types of band crossings.The observable topological surface states in(110)surface also support that this material experiences topological phase transition twice.The layered heterostructure with van der Waals force provides us with a new desirable platform upon which to control topological phase transition and construct topological superconductors.展开更多
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne...Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.展开更多
Quasi-one-dimensional(1D)graphene nanoribbons(GNRs)play a crucial role in advancement of nextgeneration devices.Recent studies have suggested their potential to exhibit unique symmetry-protected topological phases def...Quasi-one-dimensional(1D)graphene nanoribbons(GNRs)play a crucial role in advancement of nextgeneration devices.Recent studies have suggested their potential to exhibit unique symmetry-protected topological phases defined by a Z_(2) invariant.By employing both the tight-binding model and the Floquet theory,our investigation demonstrates the effective control of the topological phase within quasi-1D armchair GNRs(AGNRs)using elliptically polarized light,unveiling rich topological phase diagrams.Specifically,we observe that varying the amplitude of the light can induce transitions in the band gap(E_(g))of AGNRs,leading to multiple changes in the system’s Z_(2) invariant.Furthermore,for heterojunctions composed of different AGNR segments,the junction state can be either created or eliminated by the application of elliptically polarized light.展开更多
The current research of sandwich structures under dynamic loading mainly focus on the response characteristic of structure.The micro-topology of core layers would sufficiently influence the property of sandwich struct...The current research of sandwich structures under dynamic loading mainly focus on the response characteristic of structure.The micro-topology of core layers would sufficiently influence the property of sandwich structure.However,the micro deformation and topology mechanism of structural deformation and energy absorption are unclear.In this paper,based on the bi-directional evolutionary structural optimization method and periodic base cell(PBC)technology,a topology optimization frame work is proposed to optimize the core layer of sandwich beams.The objective of the present optimization problem is to maximize shear stiffness of PBC with a volume constraint.The effects of the volume fraction,filter radius,and initial PBC aspect ratio on the micro-topology of the core were discussed.The dynamic response process,core compression,and energy absorption capacity of the sandwich beams under blast impact loading were analyzed by the finite element method.The results demonstrated that the overpressure action stage was coupled with the core compression stage.Under the same loading and mass per unit area,the sandwich beam with a 20%volume fraction core layer had the best blast resistance.The filter radius has a slight effect on the shear stiffness and blast resistances of the sandwich beams.But increasing the filter radius could slightly improve the bending stiffness.Upon changing the initial PBC aspect ratio,there are three ways for PBC evolution:The first is to change the angle between the adjacent bars,the second is to further form holes in the bars,and the third is to combine the first two ways.However,not all three ways can improve the energy absorption capacity of the structure.Changing the aspect ratio of the PBC arbitrarily may lead to worse results.More studies are necessary for further detailed optimization.This research proposes a new topology sandwich beam structure by micro-topology optimization,which has sufficient shear stiffness.The micro mechanism of structural energy absorption is clarified,it is significant for structural energy absorption design.展开更多
Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in ...Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in systems with broken time-reversal symmetry is crucial for realizing non-trivial quantum effects.We delve into the electronic structure of the rare-earth-based antiferromagnetic Dirac semimetal EuMg_(2)Bi_(2) using first-principles calculations and angle-resolved photoemission spectroscopy.Our calculations reveal that the spin-orbit coupling(SOC)in EuMg_(2)Bi_(2) prompts an insulator to topological semimetal transition,with the Dirac bands protected by crystal symmetries.The linearly dispersive states near the Fermi level,primarily originating from Bi 6p orbitals,are observed on both the(001)and(100)surfaces,confirming that EuMg_(2)Bi_(2) is a three-dimensional topological Dirac semimetal.This research offers pivotal insights into the interplay between magnetism,SOC and topological phase transitions in spintronics applications.展开更多
SrIrO_(3),a Dirac material with a strong spin-orbit coupling(SOC),is a platform for studying topological properties in strongly correlated systems,where its band structure can be modulated by multiple factors,such as ...SrIrO_(3),a Dirac material with a strong spin-orbit coupling(SOC),is a platform for studying topological properties in strongly correlated systems,where its band structure can be modulated by multiple factors,such as crystal symmetry,elements doping,oxygen vacancies,magnetic field,and temperature.Here,we find that the engineered carrier density plays a critical role on the magnetoelectric transport properties of the topological semimetal SrIrO_(3).The decrease of carrier density subdues the weak localization and the associated negative magnetoresistance,while enhancing the SOC-induced weak anti-localization.Notably,the sample with the lowest carrier density exhibits high-field positive magnetoresistance,suggesting the presence of a Dirac cone.In addition,the anisotropic magnetoresistance indicates the anisotropy of the electronic structure near the Fermi level.The engineering of carrier density provides a general strategy to control the Fermi surface and electronic structure in topological materials.展开更多
基金supported by the National Natural Science Foundation of China,No.82202718the Natural Science Foundation of Beijing,No.L212050the China Postdoctoral Science Foundation,Nos.2019M664007,2021T140793(all to ZL)。
文摘Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.
基金the National Natural Science Foundation of China and the Natural Science Foundation of Jiangsu Province.It was also supported in part by Young Elite Scientists Sponsorship Program by CAST.
文摘Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.
基金This study is financially supported by StateKey Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Grant No.LAPS22012).
文摘This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.
基金Project supported by the Suzhou Basic Research Project (Grant No.SJC2023003)Suzhou City University National Project Pre-research Project (Grant No.2023SGY014)。
文摘We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174067 and 11804223)。
文摘We construct a three-dimensional topological superconductor Bogoliubov–de Gennes(BdG)Hamiltonian with the normal state being a three-dimensional topological insulator.By introducing inter-orbital spin-triplet pairings term△3,there are topological Majorana nodes in the bulk and they are connected by Majorana Fermi arcs on the surface,similar to the case of Weyl semimetal.Furthermore,by adding an inversion-breaking term to the normal state,momentum-independent pairing terms with different parities can coexist in the Bd G Hamiltonian,which creates more Majorana modes similar to Andreev bound states and a richer phase diagram.
基金Project supported by the National Natural Science Foundation of China(Grant No.12064011)the Natural Science Fund Project of Hunan Province(Grant No.2020JJ4498)the Graduate Research Innovation Foundation of Jishou University(Grant No.Jdy21030).
文摘This work is devoted to studying the magnon-magnon interaction effect in a two-dimensional checkerboard ferromagnet with the Dzyaloshinskii-Moriya interaction.Using a first-order Green function method,we analyze the influence of magnon-magnon interaction on the magnon band topology.We find that Chern numbers of two renormalized magnon bands are different above and below the critical temperature,which means that the magnon band gap-closing phenomenon is an indicator for one topological phase transition of the checkerboard ferromagnet.Our results show that the checkerboard ferromagnet possesses two topological phases,and its topological phase can be controlled either via the temperature or the applied magnetic field due to magnon-magnon interactions.Interestingly,it is found that the topological phase transition can occur twice with the increase in the temperature,which is different from the results of the honeycomb ferromagnet.
基金supported by the Natural Science Foundation of Zhejiang Province,China (Grant Nos.LR22A040001 and LY21A040004)the National Natural Science Foundation of China (Grant Nos.12074342 and 11835011)。
文摘We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps.It also provides opportunities to explore fundamental concepts concerning band topology and edge modes,including the difference of intracellular and intercellular Zak phases,and the role of the inversion symmetry(IS).We calculate the Zak phases of the two kinds and find excellent agreement with the dipole moment and extra charge accumulation.We also find that configurations with IS feature a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap,while configurations without IS feature one-side edge modes emerging as not only the closure of both direct and indirect bandgaps but also within the band continuum.Furthermore,by projecting to the two sublattices,we find that the effective Bloch Hamiltonian corresponds to that of a generalized Su–Schrieffer–Heeger model or the Rice–Mele model whose hopping amplitudes depend on the quasimomentum.In this way,the topological phases can be efficiently extracted through winding numbers.We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich topological characteristics can be examined by near future experiments.
基金Project supported by the National Key Research and Development Program of China (Grant No.2018YFB2200403)the National Natural Science Foundation of China (Grant Nos.91950204 and 92150302)。
文摘Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects.
基金sponsored by the National Natural Science Foundation of China(21905221,21805221)the Suzhou Technological innovation of key industries-research and development of key technologies(SGC2021118)。
文摘Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges.
基金supported by the National Science Foundation(NSF)(Grant Nos.DMR-2122070,2145797,and 1454618)by the Nebraska Center for Energy Sciences Research(NCESR)+3 种基金The Microscopy work was conducted as part of a user project at the Center for Nanophase Materials Sciences(CNMS)which is a US Department of Energy,Office of Science User Facility at Oak Ridge National LaboratoryThis work used computational resources through allocation DMR160007 from the Advanced Cyberinfrastructure Coordination Ecosystem:Services&Support(ACCESS)programwhich is supported by NSF grants#2138259,#2138286,#2138307,#2137603,and#2138296.
文摘The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain walls.We report on the pinning of polarization due to antiphase boundaries in thin films of the multiferroic hexagonal YbFeO_(3).We have directly resolved the atomic structure of a sharp antiphase boundary(APB)in YbFeO_(3) thin films using a combination of aberration-corrected scanning transmission electron microscopy(STEM)and total energy calculations based on density-functional theory(DFT).We find the presence of a layer of FeO_(6) octahedra at the APB that bridges the adjacent domains.STEM imaging shows a reversal in the direction of polarization on moving across the APB,which DFT calculations confirm is structural in nature as the polarization reversal reduces the distortion of the FeO_(6) octahedral layer at the APB.Such APBs in hexagonal perovskites are expected to serve as domain-wall pinning sites and hinder ferroelectric switching of the domains.
基金supported by the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302400)the National Natural Science Foundation of China (Grants No.11974198)the Natural Science Foundation of Shandong Province of China (Grant No.ZR2021MA091)。
文摘Majorana quantum computation offers a potential approach to securely manipulating and storing quantum data in a topological manner that may effectively resist the decoherence induced by local noise. However, actual Majorana qubit setups are susceptible to noise. In this study, from a quantum dynamics perspective, we develop a noise model for Majorana qubits that accounts for quasi-particle poisoning and Majorana overlapping with fluctuation. Furthermore, we focus on Majorana parity readout methodologies, specifically those leveraging an ancillary quantum dot, and carry out an indepth exploration of continuous measurement techniques founded on the quantum jump model of a quantum point contact.Utilizing these methodologies, we proceed to analyze the influence of noise on the afore-mentioned noise model, employing numerical computation to evaluate the power spectrum and frequency curve. In the culmination of our study, we put forward a strategy to benchmark the presence and detailed properties of noise in Majorana qubits.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant Number 102.05-2021.10.
文摘Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relationship between RS and topology spaces for the attribute reduction problem.However,the mentioned recent methods followed a strategy to construct a new measure for attribute selection.Meanwhile,the strategy for searching for the reduct is still to select each attribute and gradually add it to the reduct.Consequently,those methods tended to be inefficient for high-dimensional datasets.To overcome these challenges,we use the separability property of Hausdorff topology to quickly identify distinguishable attributes,this approach significantly reduces the time for the attribute filtering stage of the algorithm.In addition,we propose the concept of Hausdorff topological homomorphism to construct candidate reducts,this method significantly reduces the number of candidate reducts for the wrapper stage of the algorithm.These are the two main stages that have the most effect on reducing computing time for the attribute reduction of the proposed algorithm,which we call the Cluster Filter Wrapper algorithm based on Hausdorff Topology.Experimental validation on the UCI Machine Learning Repository Data shows that the proposed method achieves efficiency in both the execution time and the size of the reduct.
基金supported by the National Natural Science Foundation of China and the Open Project Program of Wuhan National Laboratory for Optoelectronics(Grant No.2022WNLOKF012).
文摘Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the metasurface unit cellsand design a reflective linear polarization conversion metasurface with ultra-broadband and wide-angle characteristics.By partitioning the metallic pattern layer into quadrants,the encoding length is effectively reduced,resulting in a shorteroptimization time.The research results indicate that the converter possesses a polarization conversion efficiency ratio higherthan 90%and a relative bandwidth ratio of 125%in a range of 0.231-0.995 THz.Meanwhile,it can maintain excellentpolarization conversion properties when the incident angle of terahertz waves is less than 45°and the polarization angle isless than 15°,demonstrating excellent practicality.New insights are provided for the design of terahertz wide-angle ultrawidebandpolarization conversion devices,and the proposed metasurfce has potential applications in terahertz polarizationimaging,spectroscopy and communication fields.
基金supported by the National Natural Science Foundation of China(Grant No.52090081)the State Key Laboratory of Hydroscience and Engineering(Grant No.2022-KY-02).
文摘The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock mass.The dynamical evolution of fracture networks under stress is crucial for unveiling the interaction patterns among fractures.However,existing models are undirected graphs focused on stationary topology,which need optimization to depict fractures'dynamic development and rupture process.To compensate for the time and destruction terms,we propose the damage network model,which defines the physical interpretation of fractures through the ternary motif.We focus primarily on the evolution of node types,topological attributes,and motifs of the fracture network in limestone under uniaxial stress.Observations expose the varying behavior of the nodes'self-dynamics and neighbors'adjacent dynamics in the fracture network.This approach elucidates the impact of micro-crack behaviors on large brittle shear fractures from a topological perspective and further subdivides the progressive failure stage into four distinct phases(isolated crack growth phase,crack splay phase,damage coalescence phase,and mechanical failure phase)based on the significance profile of the motif.Regression analysis reveals a positive linear and negative power correlation between fracture network density and branch number to the rock damage resistance,respectively.The damage network model introduces a novel methodology for depicting the interaction of two-dimensional(2D)projected fractures,considering the dynamic spatiotemporal development characteristics and fracture geometric variation.It helps dynamically characterize properties such as connectivity,permeability,and damage factors while comprehensively assessing damage in rock mass fracture networks.
文摘Based on first-principles calculations,we investigate the electronic band structures and topological properties of heterostructure BiTeCl/HfTe_(2) under c-direction strain.In the primitive structure,this material undergoes a phase transition from an insulator with a narrow indirect gap to a metal by strong spin-orbital coupling.When strain effect is considered,band inversion at time-reversal invariant point Z is responsible for the topological phase transition.These nontrivial topologies are caused by two different types of band crossings.The observable topological surface states in(110)surface also support that this material experiences topological phase transition twice.The layered heterostructure with van der Waals force provides us with a new desirable platform upon which to control topological phase transition and construct topological superconductors.
文摘Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.
基金supported by the National Natural Science Foundation of China(Grant Nos.92265203 and 11974340)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grants Nos.XDB0460000,XDB28000000,and XDPB22)+1 种基金the Innovation Program for Quantum Science and Technology(Grant No.2024ZD0300104)the National Key Research and Development Program of China(Grant No.2018YFA0306101)。
文摘Quasi-one-dimensional(1D)graphene nanoribbons(GNRs)play a crucial role in advancement of nextgeneration devices.Recent studies have suggested their potential to exhibit unique symmetry-protected topological phases defined by a Z_(2) invariant.By employing both the tight-binding model and the Floquet theory,our investigation demonstrates the effective control of the topological phase within quasi-1D armchair GNRs(AGNRs)using elliptically polarized light,unveiling rich topological phase diagrams.Specifically,we observe that varying the amplitude of the light can induce transitions in the band gap(E_(g))of AGNRs,leading to multiple changes in the system’s Z_(2) invariant.Furthermore,for heterojunctions composed of different AGNR segments,the junction state can be either created or eliminated by the application of elliptically polarized light.
基金Supported by National Natural Science Foundation of China (Grant Nos.12072219,12202303,12272254)Shanxi Provincial Excellent Talents Science and Technology Innovation Project of China (Grant No.201805D211033)。
文摘The current research of sandwich structures under dynamic loading mainly focus on the response characteristic of structure.The micro-topology of core layers would sufficiently influence the property of sandwich structure.However,the micro deformation and topology mechanism of structural deformation and energy absorption are unclear.In this paper,based on the bi-directional evolutionary structural optimization method and periodic base cell(PBC)technology,a topology optimization frame work is proposed to optimize the core layer of sandwich beams.The objective of the present optimization problem is to maximize shear stiffness of PBC with a volume constraint.The effects of the volume fraction,filter radius,and initial PBC aspect ratio on the micro-topology of the core were discussed.The dynamic response process,core compression,and energy absorption capacity of the sandwich beams under blast impact loading were analyzed by the finite element method.The results demonstrated that the overpressure action stage was coupled with the core compression stage.Under the same loading and mass per unit area,the sandwich beam with a 20%volume fraction core layer had the best blast resistance.The filter radius has a slight effect on the shear stiffness and blast resistances of the sandwich beams.But increasing the filter radius could slightly improve the bending stiffness.Upon changing the initial PBC aspect ratio,there are three ways for PBC evolution:The first is to change the angle between the adjacent bars,the second is to further form holes in the bars,and the third is to combine the first two ways.However,not all three ways can improve the energy absorption capacity of the structure.Changing the aspect ratio of the PBC arbitrarily may lead to worse results.More studies are necessary for further detailed optimization.This research proposes a new topology sandwich beam structure by micro-topology optimization,which has sufficient shear stiffness.The micro mechanism of structural energy absorption is clarified,it is significant for structural energy absorption design.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1604302)the National Natural Science Foundation of China(Grant Nos.U1632266,11927807,and U2032207)the approval of the Proposal Assessing Committee of SiP.ME^(2) platform project(Proposal No.11227902)supported by the National Science Foundation of China。
文摘Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in systems with broken time-reversal symmetry is crucial for realizing non-trivial quantum effects.We delve into the electronic structure of the rare-earth-based antiferromagnetic Dirac semimetal EuMg_(2)Bi_(2) using first-principles calculations and angle-resolved photoemission spectroscopy.Our calculations reveal that the spin-orbit coupling(SOC)in EuMg_(2)Bi_(2) prompts an insulator to topological semimetal transition,with the Dirac bands protected by crystal symmetries.The linearly dispersive states near the Fermi level,primarily originating from Bi 6p orbitals,are observed on both the(001)and(100)surfaces,confirming that EuMg_(2)Bi_(2) is a three-dimensional topological Dirac semimetal.This research offers pivotal insights into the interplay between magnetism,SOC and topological phase transitions in spintronics applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.T2350005 and 5227123)the National Science Fund for Distinguished Young Scholars(Grant No.52225205)+1 种基金the National Key Research and Development Program of China(Grant Nos.2021YFA0718700 and 2023YFA1406500)the Fundamental Research Funds for the Central Universities。
文摘SrIrO_(3),a Dirac material with a strong spin-orbit coupling(SOC),is a platform for studying topological properties in strongly correlated systems,where its band structure can be modulated by multiple factors,such as crystal symmetry,elements doping,oxygen vacancies,magnetic field,and temperature.Here,we find that the engineered carrier density plays a critical role on the magnetoelectric transport properties of the topological semimetal SrIrO_(3).The decrease of carrier density subdues the weak localization and the associated negative magnetoresistance,while enhancing the SOC-induced weak anti-localization.Notably,the sample with the lowest carrier density exhibits high-field positive magnetoresistance,suggesting the presence of a Dirac cone.In addition,the anisotropic magnetoresistance indicates the anisotropy of the electronic structure near the Fermi level.The engineering of carrier density provides a general strategy to control the Fermi surface and electronic structure in topological materials.