We have studied the ground state configurations of a rotating Bose-Einstein condensation in a toroidal trap as the radius of the central Ganssian potentiaJ expands adiabatically. Firstly, we observe that the vortices ...We have studied the ground state configurations of a rotating Bose-Einstein condensation in a toroidal trap as the radius of the central Ganssian potentiaJ expands adiabatically. Firstly, we observe that the vortices are devoured successively into the central hole of the condensate to form a giant vortex as the radius of the trap expands. When all the pre-existing vortices are absorbed, the angular momentum of the system still increase as the radius of the ganssian potential enlarges. When increasing the interaction strength, we find that more singly quantized vortices are squeezed into the condensate, but the giant vortex does not change.展开更多
The experimental realization of Rydberg dressing technology in ultracold atomic systems provides another superior platform for studying novel states of matter and macroscopic quantum phenomena.In this work,based on th...The experimental realization of Rydberg dressing technology in ultracold atomic systems provides another superior platform for studying novel states of matter and macroscopic quantum phenomena.In this work,based on the mean-field theory,we have investigated the ground-state phases of a two-component Bose–Einstein condensate with Rydberg interaction and confined in a toroidal trap.The effects of the Rydberg interaction and external potential,especially the Rydberg blockade radius,on the ground-state structure of such a system have been investigated in full parameter space.Our results show that the Rydberg blockade radius,which can be regarded as another controllable parameter,can be used to obtain a variety of ground-state phases.More interestingly,it is found that for weak Rydberg interactions,the Rydberg blockade radius breaks the spontaneous rotational symmetry of the system,leading to the formation of a discrete unit cell structure.For strongly interacting cases,it can be used to realize different orders of discrete rotational symmetry breaking.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.10904096 and 10604024the Natural Science Foundation of Beijing under Grant No.1092009
文摘We have studied the ground state configurations of a rotating Bose-Einstein condensation in a toroidal trap as the radius of the central Ganssian potentiaJ expands adiabatically. Firstly, we observe that the vortices are devoured successively into the central hole of the condensate to form a giant vortex as the radius of the trap expands. When all the pre-existing vortices are absorbed, the angular momentum of the system still increase as the radius of the ganssian potential enlarges. When increasing the interaction strength, we find that more singly quantized vortices are squeezed into the condensate, but the giant vortex does not change.
基金supported by the National Natural Science Foundation of China under Grants No.12005125,No.12105365,12175129the Key Research Program of Frontier Sciences of Chinese Academy of Sciences under Grant No.ZDBS-LY-7016+2 种基金Shaanxi Fundamental Science Research Project for Mathematics and Physics under Grant No.22JSY034Scientific Research Program Funded by Shaanxi Provincial Education Department Program No.23JP020the Youth Innovation Team of Shaanxi Universities。
文摘The experimental realization of Rydberg dressing technology in ultracold atomic systems provides another superior platform for studying novel states of matter and macroscopic quantum phenomena.In this work,based on the mean-field theory,we have investigated the ground-state phases of a two-component Bose–Einstein condensate with Rydberg interaction and confined in a toroidal trap.The effects of the Rydberg interaction and external potential,especially the Rydberg blockade radius,on the ground-state structure of such a system have been investigated in full parameter space.Our results show that the Rydberg blockade radius,which can be regarded as another controllable parameter,can be used to obtain a variety of ground-state phases.More interestingly,it is found that for weak Rydberg interactions,the Rydberg blockade radius breaks the spontaneous rotational symmetry of the system,leading to the formation of a discrete unit cell structure.For strongly interacting cases,it can be used to realize different orders of discrete rotational symmetry breaking.