Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by opt...Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by optical remote sensing when the wind is too strong.The relationship between the characteristics of ISWs bands in optical remote sensing images and the wind speed is still unclear.The influence of wind speeds on the characteristics of the ISWs bands is investigated based on the physical simulation experiments with the wind speeds of 1.6,3.1,3.5,3.8,and 3.9 m/s.The experimental results show that when the wind speed is 3.9 m/s,the ISWs bands cannot be observed in optical remote sensing images with the stratification of h_(1)∶h_(2)=7∶58,ρ_(1)∶ρ_(2)=1∶1.04.When the wind speeds are 3.1,3.5,and 3.8 m/s,which is lower than 3.9 m/s,the ISWs bands can be obtained in the simulated optical remote sensing image.The location of the band’s dark and light extremum and the band’s peak-to-peak spacing are almost not affected by wind speed.More-significant wind speeds can cause a greater gray difference of the light-dark bands.This provided a scientific basis for further understanding of ISW optical remote sensing imaging.展开更多
A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using ...A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement.Through simulating calculation and experiments,the effects of tightening torque on the dynamic characteristics of the rotor system connected by a spline coupling including critical speeds,vibration modes and unbalance responses are analyzed.The results show that when increasing the tightening torque,the first two critical speeds and the amplitudes of unbalance response gradually increase in varying degrees while the vibration modes are essentially unchanged.In addition,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change.展开更多
The hydro-viscous drive(HVD)has been widely used in fan transmission in vehicles,fans,and scraper conveyors for step-less speed regulation or soft starting.In the mixed friction stage,the contact,friction,and torque c...The hydro-viscous drive(HVD)has been widely used in fan transmission in vehicles,fans,and scraper conveyors for step-less speed regulation or soft starting.In the mixed friction stage,the contact,friction,and torque characteristics of friction pairs are very complex and change at any time.The characteristics of the frictional and hydrodynamic lubrication states were studied in order to calculate and predict the friction and torque characteristics of the friction pairs in the mixed friction stage.The fluid torque was calculated by applying the average shear stress model and the load-carrying capacity of asperity was determined on the basis of the fractal contact theory.In addition,the contact friction coefficient of the friction pairs was taken into consideration and measured by using the MM1000-Ⅲfriction and wear testing machine.The asperity friction torque and total torque in the mixed friction stage were obtained and finally,the test rig for the torque characteristics was set up.The results show that the contribution to the total torque is shared by the oil film and the asperity friction.The friction coefficient decreases sharply at first and then increases with a change in the relative rotational speed,following the Stribeck curve closely,and the contact frictional coefficient slowly decreases with increase in the pressure between the friction pairs.The torque between the friction pairs is provided by the asperity friction,and the torque due to the oil film reduces to zero.When the thickness of the oil film is small,a major contribution to the total torque is due to the asperity friction.The total torque also increases with the decrease in the film thickness ratio.Therefore,by theoretical analysis and experimental verification,the torque of the friction pairs in the mixed friction stage can be accurately calculated using the average shear stress model and asperity friction torque model.展开更多
The paper presents the static-torque characteristics of three-phase hybrid stepping motors and discusses the influence of way of winding connection on operating characteristics of motors of this kind.
Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate...Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate the commutation and enhance the torque production remarkably.Besides,an on line adjusting algorithm based on the Golden Section Method is adopted to search the optimal advanced conduction angle.Simulation and experimental results verify the feasibility and effectivity of the scheme proposed.展开更多
Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculat...Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculating the fluctuating components are put forward.Simulation and computation results show that the rotor winding faults will cause electromagnetictorque and rotating speed to fluctuate; and fluctuating frequencies are the same and their magnitudewill increase with the rise of the severity of the faults. The load inertia affects the torque andspeed fluctuation, with the increase of inertia, the fluctuation of the torque will rise, while thecorresponding speed fluctuation will obviously decline.展开更多
Natural properties of high speed on-off valves can be described through their on-off behavior and spool movement (static and oscillating) characteristics. High speed on-off valves can be combined with actuators in sys...Natural properties of high speed on-off valves can be described through their on-off behavior and spool movement (static and oscillating) characteristics. High speed on-off valves can be combined with actuators in systems into four typical types of composite valves whose static characteristics are related not only to the structures of the single valves and the composite ones, but also to the PWM control modes. It is proved that the composite valves have similar features as those of servo valves. The nonlinear specific properties of single valves composited can be completely compensated by the suitable PWM control modes.展开更多
A dynamic model test(CL = 4) at different velocities of train,namely different loading frequencies,is carried out to study the dynamic characteristics of a high-speed railway tunnel invert and its foundation soils.Not...A dynamic model test(CL = 4) at different velocities of train,namely different loading frequencies,is carried out to study the dynamic characteristics of a high-speed railway tunnel invert and its foundation soils.Not only are the accelerations,dynamic coefficients,dynamic stresses of the invert and foundation soils emphatically analyzed,their relationship with the velocity of the train are discussed in detail.Through laboratory testing,the attenuation of vibration propagating from up the rails is obtained and the calculation formula of the speed influence coefficient of the tunnel invert is preliminarily established.The depth of the foundation soils influenced by vibration is also determined in this study.It is shown that the responses of the tunnel invert and foundation soils to vibration are slightly increased with the velocity of the train;circumferential stresses in the bottom of the invert are tensile stresses and maximum stresses appear under the foot of the rails;the dynamic soil pressures of the foundation decrease quickly with the distance away from the tunnel invert and an exponential relationship exists between them.展开更多
High accurary in wind speed forcasting remains hard to achieve due to wind’s random distribution nature and its seasonal characteristics.Randomness,intermittent and nonstationary usually cause the portion problem of ...High accurary in wind speed forcasting remains hard to achieve due to wind’s random distribution nature and its seasonal characteristics.Randomness,intermittent and nonstationary usually cause the portion problem of the wind speed forecasting.Seasonal characteristics of wind speed means that its feature distribution is inconsistent.This typically results that the persistence of excitation for modeling can not be guaranteed,and may severely reduce the possibilities of high precise forecasting model.In this paper,we proposed two effective solutions to solve the problems caused by the randomness and seasonal characteristics of the wind speed.(1)Wavelet analysis is used to extract the robust components of time series and reduce the influence of randomness.(2)Based on the energy distribution about the extracted amplitude and associated frequency,seasonal characteristics of wind speed are analyzed based on self-similarity in periodogram under scales range generated by wavelet transformation.Thus,the original dataset is reasonably divided into subsest which can effectively reflect the seasonal distribution characteristics of wind speed.In addition,two strategies are given to optimal model structure and improve the forecasting accuracy:(1)The forecasting model’s lag space is approximately estimated by the Lipschitz quotient to improve the generality ability of the feedforward neural network.(2)The forecasting accuracy and model robustness are further improved by the wavelet decomposition combined with AdaBoosting neural network.Finally,experimental evaluation based on the dataset from National Renewable Energy Laboratory(NREL)is given to demonstrate the performance of the proposed approach.展开更多
Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle,...Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle, and the effect of squeeze flow and pressure differential flow is considered. The dynamic process of lubrication film formation through squeezing is numerically studied by computer simulation. Effects of supply pressure, initial lubrication film thickness, velocity damping coefficient, loading impact and gravity, etc are studied. Advantages of novel slipper pairs with large oil cavity area are pointed out.展开更多
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte...The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.展开更多
The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion ba...The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents.展开更多
Three speed controllers for an axial magnetic flux switched reluctance motor with only one stator, are described and experimentally tested. As it is known, when current pulses are imposed in their windings, high rippl...Three speed controllers for an axial magnetic flux switched reluctance motor with only one stator, are described and experimentally tested. As it is known, when current pulses are imposed in their windings, high ripple torque is obtained. In order to reduce this ripple, a control strategy with modified current shapes is proposed. A workbench consisting of a machine prototype and the control system based on a microcontroller was built. These controllers were: a conventional PID, a fuzzy logic PID and a neural PID type. From experimental results, the effective reduction of the torque ripple was confirmed and the performance of the controllers was compared.展开更多
Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze ...Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.展开更多
To study the influence of the pantograph fixing position on aerodynamic characteristics of high-speed trains, the aerodynamic models of high-speed trains with eight cars were established based on the theory of com- pu...To study the influence of the pantograph fixing position on aerodynamic characteristics of high-speed trains, the aerodynamic models of high-speed trains with eight cars were established based on the theory of com- putational fluid dynamics, and eight cases with pantographs fixed on different positions and in different operational orientations were considered. The pantographs were fixed on the front or the rear end of the first middle car or fixed on the front or the rear end of the last middle car. The external flow fields of the high-speed trains were numeri- cally simulated using the software STAR-CCM+. The results show that the pantograph fixing position has little effect on the aerodynamic drag force of the head car and has a large effect on the aerodynamic drag force of the tail car. The influences of the pantograph fixing position on the aerodynamic lift forces of the head car, tail car and pan- tographs are obvious. Among the eight cases, considering the total aerodynamic drag force of the train and the aerodynamic lift force of the lifted pantograph, when the pantographs are fixed on the rear end of the last middle car and the lifted pantograph is in the knuckle-upstream ori- entation, the aerodynamic performance of the high-speed train is the best.展开更多
For the high-speed gasoline engine turbocharger rotor, due to the heterogeneity of multiple parts material, manufacturing and assembly errors, running wear in impeller and uneven carbon of turbine, the random unbalanc...For the high-speed gasoline engine turbocharger rotor, due to the heterogeneity of multiple parts material, manufacturing and assembly errors, running wear in impeller and uneven carbon of turbine, the random unbalance usually can be developed which will induce excessive rotor vibration, and even lead to nonlinear vibration accidents. However, the investigation of unbalance location on the nonlinear high-speed turbocharger rotordynamic characteristics is less. In order to discuss the rotor unbalance location effects of turbocharger with nonlinear floating ring bearings(FRBs), the realistic turbocharger of gasoline engine is taken as a research object. The rotordynamic equations of motion under the condition of unbalance are derived by applied unbalance force and nonlinear oil film force of FRBs. The FE model of turbocharger rotor-bearing system is modeled which includes the unbalance excitation and nonlinear FRBs. Under the conditions of four different applied locations of unbalance, the nonlinear transient analyses are performed based on the rotor FEM. The differences of dynamic behavior are obvious to the turbocharger rotor systems for four conditions, and the bifurcation phenomena are different. From the results of waterfall and transient response analysis, the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different from the different unbalance locations, and the non-synchronous vibration does not occur in the turbocharger and the amplitude is relative stable and minimum under the condition 4. The turbocharger vibration and non-synchronous components could be reduced or suppressed by controlling the applied location of unbalance, which is helpful for the dynamic design, fault diagnosis and vibration control of the high-speed gasoline engine turbochargers.展开更多
On a self-made super-high shear strain rate rheometer, the rheological characteristics and apparent viscosity curves of a high-speed bearing grease were obtained under different working conditions. A new grease rheolo...On a self-made super-high shear strain rate rheometer, the rheological characteristics and apparent viscosity curves of a high-speed bearing grease were obtained under different working conditions. A new grease rheological model suited to a shear strain rate range of 0—3.5×10~6s^(-1) was presented. The results showed that the shear stress increased linearly at first and then increased nonlinearly with the increase in shear strain rate up to 1.5×10~6s^(-1), and finally the shear stress decreased slightly with the successive increase in shear strain rate. The shear stress increased with a decreasing rolling speed and an increasing contact pressure. The apparent viscosity decreased rapidly with the increase of shear strain rate at beginning and could approach the viscosity of the base oil if the shear strain rate surpassed 1.5×10~6s^(-1). The fits between the test data and the predicted values by the new model were fairly good.展开更多
A new type of differential double-stator swing hydraulic motor, based on double stator structure, was introduced. Compared with the traditional swing hydraulic motors, it could provide various kinds of rotational spee...A new type of differential double-stator swing hydraulic motor, based on double stator structure, was introduced. Compared with the traditional swing hydraulic motors, it could provide various kinds of rotational speeds and torques under the same conditions of input flow rate and pressure. The operating prindple and graphic symbols were described. The output speed and torque characters in multifarious connection modes were analyzed through single-acting differential double-stator swing hydraulic multi-motors. Then the differential connection modes and differential principles of differential double-stator swing hydraulic multi-motors were stated. Furthermore, the output speed and torque characters of double- acting and triple-acting ones in multifarious connection modes were gotten. The interaction between output torque and the displacement ratio was studied. Finally, the internal leakage that influenced the volumetric efficiency was researched. The theoretical and experimental researches show that the differential double-stutor swing hydraulic multi-motors can provide various kinds of rotational speeds and torques. Predictably, this new kind of swing hydraulic multi-motors has broad application prospects in machine tool equipments, engineering machineries, and simulation turntables.展开更多
A novel speed sensor-less direct torque control induction motor drive system for the mining locomotive haulage is presented in the paper. Rotor speed identification is based on the model reference adaptive control the...A novel speed sensor-less direct torque control induction motor drive system for the mining locomotive haulage is presented in the paper. Rotor speed identification is based on the model reference adaptive control theory with neural network using back propagation algorithm. The system is implemented using a real-time TMS320F240 digital signal processor. The simulation study and experiment results indicate that the suggested system has good performance.展开更多
According to the valve port features of high speed on-off valve and its actions, the valve port can be simplified into an a-type half bridge construction. A method that tests the dynamic characteristics of the high sp...According to the valve port features of high speed on-off valve and its actions, the valve port can be simplified into an a-type half bridge construction. A method that tests the dynamic characteristics of the high speed on-off valve by the output pressure signal of the a-type half bridge is proposed. Having analyzed the factors related to the dynamic characteristics of an a-type half bridge, a rule for designing the outlet chamber's volume is worked out. According to the rule, a test stand is built to test the self-developed high-speed on-off valve. From the test results, it can be seen that with the outlet chamber's volume controlled by the rule the rise time of the pressure signals driven by signals with different frequencies changes very little. The test results conform to the simulation results, which nroves the correctness of the method.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.61871353,42006164)。
文摘Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by optical remote sensing when the wind is too strong.The relationship between the characteristics of ISWs bands in optical remote sensing images and the wind speed is still unclear.The influence of wind speeds on the characteristics of the ISWs bands is investigated based on the physical simulation experiments with the wind speeds of 1.6,3.1,3.5,3.8,and 3.9 m/s.The experimental results show that when the wind speed is 3.9 m/s,the ISWs bands cannot be observed in optical remote sensing images with the stratification of h_(1)∶h_(2)=7∶58,ρ_(1)∶ρ_(2)=1∶1.04.When the wind speeds are 3.1,3.5,and 3.8 m/s,which is lower than 3.9 m/s,the ISWs bands can be obtained in the simulated optical remote sensing image.The location of the band’s dark and light extremum and the band’s peak-to-peak spacing are almost not affected by wind speed.More-significant wind speeds can cause a greater gray difference of the light-dark bands.This provided a scientific basis for further understanding of ISW optical remote sensing imaging.
文摘A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement.Through simulating calculation and experiments,the effects of tightening torque on the dynamic characteristics of the rotor system connected by a spline coupling including critical speeds,vibration modes and unbalance responses are analyzed.The results show that when increasing the tightening torque,the first two critical speeds and the amplitudes of unbalance response gradually increase in varying degrees while the vibration modes are essentially unchanged.In addition,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change.
基金Supported by National Natural Science Foundation of China(Grant Nos.51805351,U1810123)
文摘The hydro-viscous drive(HVD)has been widely used in fan transmission in vehicles,fans,and scraper conveyors for step-less speed regulation or soft starting.In the mixed friction stage,the contact,friction,and torque characteristics of friction pairs are very complex and change at any time.The characteristics of the frictional and hydrodynamic lubrication states were studied in order to calculate and predict the friction and torque characteristics of the friction pairs in the mixed friction stage.The fluid torque was calculated by applying the average shear stress model and the load-carrying capacity of asperity was determined on the basis of the fractal contact theory.In addition,the contact friction coefficient of the friction pairs was taken into consideration and measured by using the MM1000-Ⅲfriction and wear testing machine.The asperity friction torque and total torque in the mixed friction stage were obtained and finally,the test rig for the torque characteristics was set up.The results show that the contribution to the total torque is shared by the oil film and the asperity friction.The friction coefficient decreases sharply at first and then increases with a change in the relative rotational speed,following the Stribeck curve closely,and the contact frictional coefficient slowly decreases with increase in the pressure between the friction pairs.The torque between the friction pairs is provided by the asperity friction,and the torque due to the oil film reduces to zero.When the thickness of the oil film is small,a major contribution to the total torque is due to the asperity friction.The total torque also increases with the decrease in the film thickness ratio.Therefore,by theoretical analysis and experimental verification,the torque of the friction pairs in the mixed friction stage can be accurately calculated using the average shear stress model and asperity friction torque model.
文摘The paper presents the static-torque characteristics of three-phase hybrid stepping motors and discusses the influence of way of winding connection on operating characteristics of motors of this kind.
基金Supported by College Doctoral- Program Special ResearchFund of the Ministry of Education (No.970 0 562 1 )
文摘Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate the commutation and enhance the torque production remarkably.Besides,an on line adjusting algorithm based on the Golden Section Method is adopted to search the optimal advanced conduction angle.Simulation and experimental results verify the feasibility and effectivity of the scheme proposed.
文摘Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculating the fluctuating components are put forward.Simulation and computation results show that the rotor winding faults will cause electromagnetictorque and rotating speed to fluctuate; and fluctuating frequencies are the same and their magnitudewill increase with the rise of the severity of the faults. The load inertia affects the torque andspeed fluctuation, with the increase of inertia, the fluctuation of the torque will rise, while thecorresponding speed fluctuation will obviously decline.
文摘Natural properties of high speed on-off valves can be described through their on-off behavior and spool movement (static and oscillating) characteristics. High speed on-off valves can be combined with actuators in systems into four typical types of composite valves whose static characteristics are related not only to the structures of the single valves and the composite ones, but also to the PWM control modes. It is proved that the composite valves have similar features as those of servo valves. The nonlinear specific properties of single valves composited can be completely compensated by the suitable PWM control modes.
基金the National Program on Key Basic Research Project of China(973 Program)under Grant No.2011CB013802the National Basic Research Program of China under Grant No.51108461 and No.51308270
文摘A dynamic model test(CL = 4) at different velocities of train,namely different loading frequencies,is carried out to study the dynamic characteristics of a high-speed railway tunnel invert and its foundation soils.Not only are the accelerations,dynamic coefficients,dynamic stresses of the invert and foundation soils emphatically analyzed,their relationship with the velocity of the train are discussed in detail.Through laboratory testing,the attenuation of vibration propagating from up the rails is obtained and the calculation formula of the speed influence coefficient of the tunnel invert is preliminarily established.The depth of the foundation soils influenced by vibration is also determined in this study.It is shown that the responses of the tunnel invert and foundation soils to vibration are slightly increased with the velocity of the train;circumferential stresses in the bottom of the invert are tensile stresses and maximum stresses appear under the foot of the rails;the dynamic soil pressures of the foundation decrease quickly with the distance away from the tunnel invert and an exponential relationship exists between them.
文摘High accurary in wind speed forcasting remains hard to achieve due to wind’s random distribution nature and its seasonal characteristics.Randomness,intermittent and nonstationary usually cause the portion problem of the wind speed forecasting.Seasonal characteristics of wind speed means that its feature distribution is inconsistent.This typically results that the persistence of excitation for modeling can not be guaranteed,and may severely reduce the possibilities of high precise forecasting model.In this paper,we proposed two effective solutions to solve the problems caused by the randomness and seasonal characteristics of the wind speed.(1)Wavelet analysis is used to extract the robust components of time series and reduce the influence of randomness.(2)Based on the energy distribution about the extracted amplitude and associated frequency,seasonal characteristics of wind speed are analyzed based on self-similarity in periodogram under scales range generated by wavelet transformation.Thus,the original dataset is reasonably divided into subsest which can effectively reflect the seasonal distribution characteristics of wind speed.In addition,two strategies are given to optimal model structure and improve the forecasting accuracy:(1)The forecasting model’s lag space is approximately estimated by the Lipschitz quotient to improve the generality ability of the feedforward neural network.(2)The forecasting accuracy and model robustness are further improved by the wavelet decomposition combined with AdaBoosting neural network.Finally,experimental evaluation based on the dataset from National Renewable Energy Laboratory(NREL)is given to demonstrate the performance of the proposed approach.
文摘Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle, and the effect of squeeze flow and pressure differential flow is considered. The dynamic process of lubrication film formation through squeezing is numerically studied by computer simulation. Effects of supply pressure, initial lubrication film thickness, velocity damping coefficient, loading impact and gravity, etc are studied. Advantages of novel slipper pairs with large oil cavity area are pointed out.
基金Provincial Key Laboratory of Precision and Micro-Manufacturing Technology of Jiangsu,China(No.Z0601-052-02).
文摘The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.
基金supported by the National Natural Science Foundation of China(52106284)the Natural Science Foundation of Hebei Province(B2021507001)support of Project to Promote Innovation in Doctoral Research at CPPU(BSKY202302).
文摘The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents.
文摘Three speed controllers for an axial magnetic flux switched reluctance motor with only one stator, are described and experimentally tested. As it is known, when current pulses are imposed in their windings, high ripple torque is obtained. In order to reduce this ripple, a control strategy with modified current shapes is proposed. A workbench consisting of a machine prototype and the control system based on a microcontroller was built. These controllers were: a conventional PID, a fuzzy logic PID and a neural PID type. From experimental results, the effective reduction of the torque ripple was confirmed and the performance of the controllers was compared.
基金the National Natural Science Foundation of China(Grant Nos. 51278423 and 51478395)for its financial support
文摘Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.
基金supported by the High-Speed Railway Basic Research Fund Key Project of China(Grant No.U1234208)the National Natural Science Foundation of China(Grant Nos.51475394 and 51605397)
文摘To study the influence of the pantograph fixing position on aerodynamic characteristics of high-speed trains, the aerodynamic models of high-speed trains with eight cars were established based on the theory of com- putational fluid dynamics, and eight cases with pantographs fixed on different positions and in different operational orientations were considered. The pantographs were fixed on the front or the rear end of the first middle car or fixed on the front or the rear end of the last middle car. The external flow fields of the high-speed trains were numeri- cally simulated using the software STAR-CCM+. The results show that the pantograph fixing position has little effect on the aerodynamic drag force of the head car and has a large effect on the aerodynamic drag force of the tail car. The influences of the pantograph fixing position on the aerodynamic lift forces of the head car, tail car and pan- tographs are obvious. Among the eight cases, considering the total aerodynamic drag force of the train and the aerodynamic lift force of the lifted pantograph, when the pantographs are fixed on the rear end of the last middle car and the lifted pantograph is in the knuckle-upstream ori- entation, the aerodynamic performance of the high-speed train is the best.
基金Supported by National Natural Science Foundation of China(Grant Nos.51575176,51375162)Scientific Research Foundation of Hunan Provincial Education Department of China(Grant No.15B085)Postgraduate Innovation Foundation of Hunan University of Science and Technology,China(Grant No.S140020)
文摘For the high-speed gasoline engine turbocharger rotor, due to the heterogeneity of multiple parts material, manufacturing and assembly errors, running wear in impeller and uneven carbon of turbine, the random unbalance usually can be developed which will induce excessive rotor vibration, and even lead to nonlinear vibration accidents. However, the investigation of unbalance location on the nonlinear high-speed turbocharger rotordynamic characteristics is less. In order to discuss the rotor unbalance location effects of turbocharger with nonlinear floating ring bearings(FRBs), the realistic turbocharger of gasoline engine is taken as a research object. The rotordynamic equations of motion under the condition of unbalance are derived by applied unbalance force and nonlinear oil film force of FRBs. The FE model of turbocharger rotor-bearing system is modeled which includes the unbalance excitation and nonlinear FRBs. Under the conditions of four different applied locations of unbalance, the nonlinear transient analyses are performed based on the rotor FEM. The differences of dynamic behavior are obvious to the turbocharger rotor systems for four conditions, and the bifurcation phenomena are different. From the results of waterfall and transient response analysis, the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different from the different unbalance locations, and the non-synchronous vibration does not occur in the turbocharger and the amplitude is relative stable and minimum under the condition 4. The turbocharger vibration and non-synchronous components could be reduced or suppressed by controlling the applied location of unbalance, which is helpful for the dynamic design, fault diagnosis and vibration control of the high-speed gasoline engine turbochargers.
基金financially supported by the National Natural Science Foundation of China (No. 51475143)the Tianjin Natural Science Foundation (No.16JCYBJC18900)
文摘On a self-made super-high shear strain rate rheometer, the rheological characteristics and apparent viscosity curves of a high-speed bearing grease were obtained under different working conditions. A new grease rheological model suited to a shear strain rate range of 0—3.5×10~6s^(-1) was presented. The results showed that the shear stress increased linearly at first and then increased nonlinearly with the increase in shear strain rate up to 1.5×10~6s^(-1), and finally the shear stress decreased slightly with the successive increase in shear strain rate. The shear stress increased with a decreasing rolling speed and an increasing contact pressure. The apparent viscosity decreased rapidly with the increase of shear strain rate at beginning and could approach the viscosity of the base oil if the shear strain rate surpassed 1.5×10~6s^(-1). The fits between the test data and the predicted values by the new model were fairly good.
基金National Natural Science Foundation of China(No.50975246)
文摘A new type of differential double-stator swing hydraulic motor, based on double stator structure, was introduced. Compared with the traditional swing hydraulic motors, it could provide various kinds of rotational speeds and torques under the same conditions of input flow rate and pressure. The operating prindple and graphic symbols were described. The output speed and torque characters in multifarious connection modes were analyzed through single-acting differential double-stator swing hydraulic multi-motors. Then the differential connection modes and differential principles of differential double-stator swing hydraulic multi-motors were stated. Furthermore, the output speed and torque characters of double- acting and triple-acting ones in multifarious connection modes were gotten. The interaction between output torque and the displacement ratio was studied. Finally, the internal leakage that influenced the volumetric efficiency was researched. The theoretical and experimental researches show that the differential double-stutor swing hydraulic multi-motors can provide various kinds of rotational speeds and torques. Predictably, this new kind of swing hydraulic multi-motors has broad application prospects in machine tool equipments, engineering machineries, and simulation turntables.
文摘A novel speed sensor-less direct torque control induction motor drive system for the mining locomotive haulage is presented in the paper. Rotor speed identification is based on the model reference adaptive control theory with neural network using back propagation algorithm. The system is implemented using a real-time TMS320F240 digital signal processor. The simulation study and experiment results indicate that the suggested system has good performance.
文摘According to the valve port features of high speed on-off valve and its actions, the valve port can be simplified into an a-type half bridge construction. A method that tests the dynamic characteristics of the high speed on-off valve by the output pressure signal of the a-type half bridge is proposed. Having analyzed the factors related to the dynamic characteristics of an a-type half bridge, a rule for designing the outlet chamber's volume is worked out. According to the rule, a test stand is built to test the self-developed high-speed on-off valve. From the test results, it can be seen that with the outlet chamber's volume controlled by the rule the rise time of the pressure signals driven by signals with different frequencies changes very little. The test results conform to the simulation results, which nroves the correctness of the method.