期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Nonlinear analysis on dynamic buckling of eccentrically stiffened functionally graded material toroidal shell segment surrounded by elastic foundations in thermal environment and under time-dependent torsional loads
1
作者 D.V.DUNG P.M.VUONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第7期835-860,共26页
The nonlinear analysis with an analytical approach on dynamic torsional buckling of stiffened functionally graded thin toroidal shell segments is investigated. The shell is reinforced by inside stiffeners and surround... The nonlinear analysis with an analytical approach on dynamic torsional buckling of stiffened functionally graded thin toroidal shell segments is investigated. The shell is reinforced by inside stiffeners and surrounded by elastic foundations in a thermal environment and under a time-dependent torsional load. The governing equations are derived based on the Donnell shell theory with the yon Karman geometrical nonlinearity, the Stein and McElman assumption, the smeared stiffeners technique, and the Galerkin method. A deflection function with three terms is chosen. The thermal parameters of the uniform temperature rise and nonlinear temperature conduction law are found in an explicit form. A closed-form expression for determining the static critical torsional load is obtained. A critical dynamic torsional load is found by the fourth-order Runge-Kutta method and the Budiansky-Roth criterion. The effects of stiffeners, foundations, material, and dimensional parameters on dynamic responses of shells are considered. 展开更多
关键词 toroidal shell segment functionally graded material (FGM) stiffened shell critical static and dynamic torsional load thermal environment
下载PDF
GIGACYCLE FATIGUE BEHAVIOR OF CAST ALUMINUM IN TENSION AND TORSION LOADING 被引量:3
2
作者 薛红前 吴铁鹰 Bathias C 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期32-37,共6页
An improved understanding of fatigue behavior of a cast aluminum alloy(2-AS5U3G-Y35)in very high cycle regime is developed through the ultrasonic fatigue test in axial and torsion loading.The new developed torsion f... An improved understanding of fatigue behavior of a cast aluminum alloy(2-AS5U3G-Y35)in very high cycle regime is developed through the ultrasonic fatigue test in axial and torsion loading.The new developed torsion fatigue system is presented.The effects of loading condition and frequency on the very high cycle fatigue(VHCF)are investigated.The cyclic loading in axial and torsion at 35 Hz and 20 kHz with stress ratio R=-1 is used respectively to demonstrate the effect of loading condition.S-N curves show that the fatigue failure occurs in the range of 105—1010 cycles in axial or torsion loading and the asymptote of S-N curve is inclined,but no fatigue limit exists under the torsion and axial loading condition.The fatigue fracture surface shows that the fatigue crack initiates from the specimen surface subjected to the cyclic torsion loading.It is different from the fatigue fracture characteristic in axial loading in which fatigue crack initiates from subsurface defect in very high cycle regime.The fatigue initiation is on the maximum shear plane,the overall crack orientation is on a typical spiral 45° to the fracture plane and it is the maximum principle stress plane.The clear shear strip in the torsion fatigue fracture surface shows that the torsion fracture is the shear fracture. 展开更多
关键词 fatigue testing torsion fatigue very high cycle fatigue(VHCF) torsion loading cast aluminum
下载PDF
Segmental Bridges under Combined Torsion, Bending and Shear
3
作者 黄真 刘西拉 《Journal of Shanghai Jiaotong university(Science)》 EI 2003年第2期111-114,共4页
Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmen... Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmental bridge with unbonded tendons under combined loading of torsion, bending and shear. According to the experiment research, a modified skew bending model was developed to calculate the bearing capacity of segmental bridges subjected to combined bending, shear and torsion. The finite element method was used to investigate the deflection behaviors of such structure, also to check the theoretical model. The theoretical and FEM research results were compared favorably with the test results from Technical University of Braunschweig, Germany. Finally, suggestion for the design and construction of segmental bridges with external prestressing was made. 展开更多
关键词 unbonded prestressing tendons segmental bridge combined loading of torsion bending and shear
下载PDF
Nonlinear analysis of pile groups subjected to combined lateral and torsional loading 被引量:1
4
作者 Ling-gang KONG Zhong-chang ZHANG Yun-min CHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第3期179-192,共14页
An empirical approach has been developed to analyze the nonlinear response of a pile group with arbitrarily distributed piles subjected to combined lateral and torsional loading.In this approach,the concept of instant... An empirical approach has been developed to analyze the nonlinear response of a pile group with arbitrarily distributed piles subjected to combined lateral and torsional loading.In this approach,the concept of instantaneous twist center is applied to analyze the displacement relationship of pile heads and establish the static equilibrium equations of the pile cap.The horizontal interaction among the individual piles is considered through the generalized p-multiplier.The coupling effect of lateral resistance on the torsional resistance of each pile is quantified using an empirical factorβ;the lateral and torsional nonlinear responses of individual piles are modeled by p-y andτ-θcurves,respectively.The proposed approach not only captures the most significant aspect of the group effect and coupling effect in a pile group subjected to combined lateral and torsional loading,but also automatically updates p-multipliers of individual piles based on pile cap displacements.The proposed approach was verified using results of model tests on pile groups subjected to lateral loading,torsional loading,and combined lateral and torsional loading,separately.In general,the pile cap response and the transfer of applied loads in the pile groups agree well with the test results. 展开更多
关键词 Combined lateral and torsional loading Pile groups Twist center p-multiplier Group effect
原文传递
Fatigue crack growth behavior of a 170 mm diameter stainless steel straight pipe subjected to combined torsion and bending load
5
作者 Selvakumar VEERARAJAN Dakshinamurthy PUKAZHENDHI Palla GANDHI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第4期905-913,共9页
In a nuclear powerplant,the rotary equipment,such as a pump directly fitted with hanger in the piping system,experiences torsional and bending loads.Higher crack growth rate occurs because of this torsional load in ad... In a nuclear powerplant,the rotary equipment,such as a pump directly fitted with hanger in the piping system,experiences torsional and bending loads.Higher crack growth rate occurs because of this torsional load in addition to the bending load.Hence,it is necessary to study the fatigue behavior of piping components under the influence of combined torsional and bending load.In this study,experimental fatigue life evaluation was conducted on a notched stainless steel SA312 Type 304LN straight pipe having an outer diameter of 170 mm.The experimental crack depth was measured using alternating current potential drop technique.The fatigue life of the stainless steel straight pipe was predicted using experiments,Delale and Erdogan method,and area-averaged root mean square-stress intensity factor approach at the deepest and surface points of the notch.Afterward,the fatigue crack growth and crack pattern were discussed.As a result,fatigue crack growth predicted using analytical methods are in good agreement with experimental results. 展开更多
关键词 fatigue life Delale and Erdogan method RMS-SIF approach stainless steel torsion and bending load fatigue crack growth
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部