Due to the rapid development of logistic industry, transportation cost is also increasing, and finding trends in transportation activities will impact positively in investment in transportation infrastructure. There i...Due to the rapid development of logistic industry, transportation cost is also increasing, and finding trends in transportation activities will impact positively in investment in transportation infrastructure. There is limited literature and data-driven analysis about trends in transportation mode. This thesis delves into the operational challenges of vehicle performance management within logistics clusters, a critical aspect of efficient supply chain operations. It aims to address the issues faced by logistics organizations in optimizing their vehicle fleets’ performance, essential for seamless logistics operations. The study’s core design involves the development of a predictive logistics model based on regression, focused on forecasting, and evaluating vehicle performance in logistics clusters. It encompasses a comprehensive literature review, research methodology, data sources, variables, feature engineering, and model training and evaluation and F-test analysis was done to identify and verify the relationships between attributes and the target variable. The findings highlight the model’s efficacy, with a low mean squared error (MSE) value of 3.42, indicating its accuracy in predicting performance metrics. The high R-squared (R2) score of 0.921 emphasizes its ability to capture relationships between input characteristics and performance metrics. The model’s training and testing accuracy further attest to its reliability and generalization capabilities. In interpretation, this research underscores the practical significance of the findings. The regression-based model provides a practical solution for the logistics industry, enabling informed decisions regarding resource allocation, maintenance planning, and delivery route optimization. This contributes to enhanced overall logistics performance and customer service. By addressing performance gaps and embracing modern logistics technologies, the study supports the ongoing evolution of vehicle performance management in logistics clusters, fostering increased competitiveness and sustainability in the logistics sector.展开更多
For the simultaneous wireless information and power transfer(SWIPT), the full-duplex MIMO system can achieve simultaneous transmission of information and energy more efficiently than the half-duplex. Based on the mean...For the simultaneous wireless information and power transfer(SWIPT), the full-duplex MIMO system can achieve simultaneous transmission of information and energy more efficiently than the half-duplex. Based on the mean-square-error(MSE) criterion, the optimization problem of joint transceiver design with transmitting power constraint and energy harvesting constraint is formulated. Next, by semidefinite relaxation(SDR) and randomization method, the SDRbased scheme is proposed. In order to reduce the complexity, the closed-form scheme is presented with some simplified measures. Robust beamforming is then studied considering the practical condition. The simulation results such as MSE versus signal-noise-ratio(SNR), MSE versus the iteration number, well prove the performance of the proposed schemes for the system model.展开更多
Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative i...Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE.展开更多
It is quite often that the theoretic model used in the Kalman filtering may not be sufficiently accurate for practical applications,due to the fact that the covariances of noises are not exactly known.Our previous wor...It is quite often that the theoretic model used in the Kalman filtering may not be sufficiently accurate for practical applications,due to the fact that the covariances of noises are not exactly known.Our previous work reveals that in such scenario the filter calculated mean square errors(FMSE)and the true mean square errors(TMSE)become inconsistent,while FMSE and TMSE are consistent in the Kalman filter with accurate models.This can lead to low credibility of state estimation regardless of using Kalman filters or adaptive Kalman filters.Obviously,it is important to study the inconsistency issue since it is vital to understand the quantitative influence induced by the inaccurate models.Aiming at this,the concept of credibility is adopted to discuss the inconsistency problem in this paper.In order to formulate the degree of the credibility,a trust factor is constructed based on the FMSE and the TMSE.However,the trust factor can not be directly computed since the TMSE cannot be found for practical applications.Based on the definition of trust factor,the estimation of the trust factor is successfully modified to online estimation of the TMSE.More importantly,a necessary and sufficient condition is found,which turns out to be the basis for better design of Kalman filters with high performance.Accordingly,beyond trust factor estimation with Sage-Husa technique(TFE-SHT),three novel trust factor estimation methods,which are directly numerical solving method(TFE-DNS),the particle swarm optimization method(PSO)and expectation maximization-particle swarm optimization method(EM-PSO)are proposed.The analysis and simulation results both show that the proposed TFE-DNS is better than the TFE-SHT for the case of single unknown noise covariance.Meanwhile,the proposed EMPSO performs completely better than the EM and PSO on the estimation of the credibility degree and state when both noise covariances should be estimated online.展开更多
In this paper, the estimators of the scale parameter of the exponential distribution obtained by applying four methods, using complete data, are critically examined and compared. These methods are the Maximum Likeliho...In this paper, the estimators of the scale parameter of the exponential distribution obtained by applying four methods, using complete data, are critically examined and compared. These methods are the Maximum Likelihood Estimator (MLE), the Square-Error Loss Function (BSE), the Entropy Loss Function (BEN) and the Composite LINEX Loss Function (BCL). The performance of these four methods was compared based on three criteria: the Mean Square Error (MSE), the Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC). Using Monte Carlo simulation based on relevant samples, the comparisons in this study suggest that the Bayesian method is better than the maximum likelihood estimator with respect to the estimation of the parameter that offers the smallest values of MSE, AIC, and BIC. Confidence intervals were then assessed to test the performance of the methods by comparing the 95% CI and average lengths (AL) for all estimation methods, showing that the Bayesian methods still offer the best performance in terms of generating the smallest ALs.展开更多
Local markets in East Africa have been destroyed by raging fires,leading to the loss of life and property in the nearby communities.Electrical circuits,arson,and neglected charcoal stoves are the major causes of these...Local markets in East Africa have been destroyed by raging fires,leading to the loss of life and property in the nearby communities.Electrical circuits,arson,and neglected charcoal stoves are the major causes of these fires.Previous methods,i.e.,satellites,are expensive to maintain and cause unnecessary delays.Also,unit-smoke detectors are highly prone to false alerts.In this paper,an Interval Type-2 TSK fuzzy model for an intelligent lightweight fire intensity detection algorithm with decision-making in low-power devices is proposed using a sparse inference rules approach.A free open–source MATLAB/Simulink fuzzy toolbox integrated into MATLAB 2018a is used to investigate the performance of the Interval Type-2 fuzzy model.Two crisp input parameters,namely:FIT and FIG��are used.Results show that the Interval Type-2 model achieved an accuracy value of FIO�=98.2%,MAE=1.3010,MSE=1.6938 and RMSE=1.3015 using regression analysis.The study shall assist the firefighting personnel in fully understanding and mitigating the current level of fire danger.As a result,the proposed solution can be fully implemented in low-cost,low-power fire detection systems to monitor the state of fire with improved accuracy and reduced false alerts.Through informed decision-making in low-cost fire detection devices,early warning notifications can be provided to aid in the rapid evacuation of people,thereby improving fire safety surveillance,management,and protection for the market community.展开更多
文摘Due to the rapid development of logistic industry, transportation cost is also increasing, and finding trends in transportation activities will impact positively in investment in transportation infrastructure. There is limited literature and data-driven analysis about trends in transportation mode. This thesis delves into the operational challenges of vehicle performance management within logistics clusters, a critical aspect of efficient supply chain operations. It aims to address the issues faced by logistics organizations in optimizing their vehicle fleets’ performance, essential for seamless logistics operations. The study’s core design involves the development of a predictive logistics model based on regression, focused on forecasting, and evaluating vehicle performance in logistics clusters. It encompasses a comprehensive literature review, research methodology, data sources, variables, feature engineering, and model training and evaluation and F-test analysis was done to identify and verify the relationships between attributes and the target variable. The findings highlight the model’s efficacy, with a low mean squared error (MSE) value of 3.42, indicating its accuracy in predicting performance metrics. The high R-squared (R2) score of 0.921 emphasizes its ability to capture relationships between input characteristics and performance metrics. The model’s training and testing accuracy further attest to its reliability and generalization capabilities. In interpretation, this research underscores the practical significance of the findings. The regression-based model provides a practical solution for the logistics industry, enabling informed decisions regarding resource allocation, maintenance planning, and delivery route optimization. This contributes to enhanced overall logistics performance and customer service. By addressing performance gaps and embracing modern logistics technologies, the study supports the ongoing evolution of vehicle performance management in logistics clusters, fostering increased competitiveness and sustainability in the logistics sector.
基金supported by the National Great Science Specif ic Project (Grants No. 2014ZX03002002-004)National Natural Science Foundation of China (Grants No. NSFC-61471067)
文摘For the simultaneous wireless information and power transfer(SWIPT), the full-duplex MIMO system can achieve simultaneous transmission of information and energy more efficiently than the half-duplex. Based on the mean-square-error(MSE) criterion, the optimization problem of joint transceiver design with transmitting power constraint and energy harvesting constraint is formulated. Next, by semidefinite relaxation(SDR) and randomization method, the SDRbased scheme is proposed. In order to reduce the complexity, the closed-form scheme is presented with some simplified measures. Robust beamforming is then studied considering the practical condition. The simulation results such as MSE versus signal-noise-ratio(SNR), MSE versus the iteration number, well prove the performance of the proposed schemes for the system model.
基金Project(61201381) supported by the National Natural Science Foundation of ChinaProject(YP12JJ202057) supported by the Future Development Foundation of Zhengzhou Information Science and Technology College,China
文摘Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE.
基金supported by the National Natural Science Foundation of China(62033010)Aeronautical Science Foundation of China(2019460T5001)。
文摘It is quite often that the theoretic model used in the Kalman filtering may not be sufficiently accurate for practical applications,due to the fact that the covariances of noises are not exactly known.Our previous work reveals that in such scenario the filter calculated mean square errors(FMSE)and the true mean square errors(TMSE)become inconsistent,while FMSE and TMSE are consistent in the Kalman filter with accurate models.This can lead to low credibility of state estimation regardless of using Kalman filters or adaptive Kalman filters.Obviously,it is important to study the inconsistency issue since it is vital to understand the quantitative influence induced by the inaccurate models.Aiming at this,the concept of credibility is adopted to discuss the inconsistency problem in this paper.In order to formulate the degree of the credibility,a trust factor is constructed based on the FMSE and the TMSE.However,the trust factor can not be directly computed since the TMSE cannot be found for practical applications.Based on the definition of trust factor,the estimation of the trust factor is successfully modified to online estimation of the TMSE.More importantly,a necessary and sufficient condition is found,which turns out to be the basis for better design of Kalman filters with high performance.Accordingly,beyond trust factor estimation with Sage-Husa technique(TFE-SHT),three novel trust factor estimation methods,which are directly numerical solving method(TFE-DNS),the particle swarm optimization method(PSO)and expectation maximization-particle swarm optimization method(EM-PSO)are proposed.The analysis and simulation results both show that the proposed TFE-DNS is better than the TFE-SHT for the case of single unknown noise covariance.Meanwhile,the proposed EMPSO performs completely better than the EM and PSO on the estimation of the credibility degree and state when both noise covariances should be estimated online.
文摘In this paper, the estimators of the scale parameter of the exponential distribution obtained by applying four methods, using complete data, are critically examined and compared. These methods are the Maximum Likelihood Estimator (MLE), the Square-Error Loss Function (BSE), the Entropy Loss Function (BEN) and the Composite LINEX Loss Function (BCL). The performance of these four methods was compared based on three criteria: the Mean Square Error (MSE), the Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC). Using Monte Carlo simulation based on relevant samples, the comparisons in this study suggest that the Bayesian method is better than the maximum likelihood estimator with respect to the estimation of the parameter that offers the smallest values of MSE, AIC, and BIC. Confidence intervals were then assessed to test the performance of the methods by comparing the 95% CI and average lengths (AL) for all estimation methods, showing that the Bayesian methods still offer the best performance in terms of generating the smallest ALs.
文摘Local markets in East Africa have been destroyed by raging fires,leading to the loss of life and property in the nearby communities.Electrical circuits,arson,and neglected charcoal stoves are the major causes of these fires.Previous methods,i.e.,satellites,are expensive to maintain and cause unnecessary delays.Also,unit-smoke detectors are highly prone to false alerts.In this paper,an Interval Type-2 TSK fuzzy model for an intelligent lightweight fire intensity detection algorithm with decision-making in low-power devices is proposed using a sparse inference rules approach.A free open–source MATLAB/Simulink fuzzy toolbox integrated into MATLAB 2018a is used to investigate the performance of the Interval Type-2 fuzzy model.Two crisp input parameters,namely:FIT and FIG��are used.Results show that the Interval Type-2 model achieved an accuracy value of FIO�=98.2%,MAE=1.3010,MSE=1.6938 and RMSE=1.3015 using regression analysis.The study shall assist the firefighting personnel in fully understanding and mitigating the current level of fire danger.As a result,the proposed solution can be fully implemented in low-cost,low-power fire detection systems to monitor the state of fire with improved accuracy and reduced false alerts.Through informed decision-making in low-cost fire detection devices,early warning notifications can be provided to aid in the rapid evacuation of people,thereby improving fire safety surveillance,management,and protection for the market community.