In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE inc...In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation,instabilities,and propulsive performance.A hybrid MPI t OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC)systems.A series of cases with the total pressure of 1 MPa,1.5 MPa,2 MPa,and the equivalence ratio of 0.9,1,1.4 are simulated.On one hand,the total pressure shows a significant impact on the instabilities of rotating detonation waves.The instability phenomenon is observed in cases with low total pressure(1 MPa)and weakened with the increase of the total pressure.The total pressure has a small impact on the detonation wave velocity and the specific impulse.On the other hand,the equivalence ratio shows a negligible influence on the instabilities,while it affects the ignition process and accounts for the detonation velocity deficit.It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition.Little difference was observed in the thrust with different equivalence ratios of 0.9,1,and 1.4.The highest specific impulse was obtained in the lean fuel cases,which is around 2700 s.The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE.展开更多
An air-cooled probe was designed for measurement of total pressure at combustor outlet;its cooling scheme combined the film cooling and convection cooling.With the aid of CFD technique,cooling effectiveness of the coo...An air-cooled probe was designed for measurement of total pressure at combustor outlet;its cooling scheme combined the film cooling and convection cooling.With the aid of CFD technique,cooling effectiveness of the coolant jets at various blow ratios was compared;suitable blow ratios and configuration of film holes were chosen accordingly.The overall cooling performance of the probe was evaluated via CFD technique,the design was improved according to the simulation result,and the cooling effect of the leading edge was obviously strengthened by increasing the local coolant mass flow rate.The results of wind tunnel test indicated that,between Mach numbers 0.2 and 0.4,the probe achieved a high accuracy at various attack angles.The probe was utilized in an annular combustor rig test,the highest temperature reached 1 760 Kand total pressure reaches 1 036 kPa.The result of rig test demonstrates that the coolant film distribution consistent appropriately with the CFD results.展开更多
With the increasing application of electric and electronic devices in space and nuclear power stations, the polymeric insulation materials are inevitably exposed to various kinds of environments. Accordingly, it becom...With the increasing application of electric and electronic devices in space and nuclear power stations, the polymeric insulation materials are inevitably exposed to various kinds of environments. Accordingly, it becomes necessary to investigate the effects of the radiation and air pressure on insulation materials. This paper describes the effects of gamma-ray irradiation and reduced pressure on dielectric breakdown of polybutylene naphthalate (PBN) and polybutylene terephthalate (PBT) by applying a DC pulse voltage. Both PBN and PBT were irradiated in air up to 100 kGy and then up to 1 000 kGy with a dose rate of 10 kGy/h by using a60Co gamma-source. The effects of total dose and reduced pressure on the time to dielectric breakdown and discharge quantity were discussed. Obtained results show that, while increasing the total dose, the discharge quantity decreased with PBN, but increased with PBT. With decreasing the air pressure, the discharge quantity increased with PBN, but decreased with PBT. With increasing the total dose, the time to dielectric breakdown increased with PBN, but decreased with PBT. With decreasing the air pressure, the time to dielectric breakdown increased with both PBN and PBT. The experimental results suggest that the chemical structure of polybutylene polymers plays a main role in the result of radiation reaction, which is related to cross-linking and degradation reaction.展开更多
To obtain the outlet temperature of combustor,a kind of high-temperature and water cooling thermocouple was designed.The main factors affecting the results of thermocouple measurement were analyzed after numerical sim...To obtain the outlet temperature of combustor,a kind of high-temperature and water cooling thermocouple was designed.The main factors affecting the results of thermocouple measurement were analyzed after numerical simulation.Results showed that the high-temperature water cooling thermocouple can achieve high temperature measurement under the condition of 2 400 K.With the increase of the distance between the water cooling structure and the stagnation cover,the temperature measurement result was more accurate,and the increase in the area ratio of the inlet and outlet of the stagnation cover within a reasonable range can make the measurement results more accurate.The surface emissivity of the measuring point had a great influence on the radiation error.The pressure and flow rate of cooling water can be effectively reduced after adding zirconia coating onto the surface of the rake body.展开更多
This article addresses total fish Hg concentrations (THg) by variations in lake Sediment THg, atmospheric Hg deposition (atmHgdep), and climate, i.e., mean annual precipitation (ppt) and air temperature. The Fish THg ...This article addresses total fish Hg concentrations (THg) by variations in lake Sediment THg, atmospheric Hg deposition (atmHgdep), and climate, i.e., mean annual precipitation (ppt) and air temperature. The Fish THg data were taken from the 1967-to-2010 Fish Mercury Datalayer (FIMDAC). This compilation was standardized for 12-cm long Yellow Perch in accordance with the USGS National Descriptive Model for Mercury in Fish (NDMMF [1]), and documents Fish THg across 1936 non-contaminated lakes in Canada. About 40% of the standardized Fish THg variations related positively to increasing ppt and Sediment THg, but negatively to increasing mean annual July temperature (TJuly). Only 20% of the Fish THg variations related positively to atmHgdep alone. Increasing TJuly likely influences Fish Hg through increased lake and upslope Hg volatilization, in-fish growth dilution, and temperature-induced demethylization. FIMDAC Fish THg effectively did not change over time while atmHgdep decreased. Similarly, the above Fish Hg trends would likely not change much based on projecting the above observations into the future using current 2070 climate-change projections across Canada and the continental US. Regionally, the projected changes in Fish Hg would mostly increase with increasing ppt. Additional not-yet mapped increases are expected to occur in subarctic regions subject to increasing permafrost decline. Locally, Fish THg would continue to be affected by upwind and upslope pollution sources, and by lake-by-lake changes in water aeration and rates of lake-water inversions.展开更多
A low mass flux steam jet in subcooled water was experimentally investigated.The transition of flow pattern from stable jet to condensation oscillation was observed at relatively high water temperature.The axial total...A low mass flux steam jet in subcooled water was experimentally investigated.The transition of flow pattern from stable jet to condensation oscillation was observed at relatively high water temperature.The axial total pressures,the axial and radial temperature distributions were measured in the jet region.The results indicated that the pressure and temperature distributions were mainly influenced by the water temperature.The correlations corrected with water temperature were given to predict the dimen-sionless axial pressure peak distance and axial temperature distributions in the jet region,the results showed a good agreement between the predictions and experiments.Moreover,the self-similarity property of the radial temperature was obtained,which agreed well with Gauss distribution.In present work,all the dimensionless properties were mainly dependent on the water temperature but weakly on the nozzle size under a certain steam mass flux.展开更多
基金The authors would like to acknowledge the National Natural Science Foundation of China(Grant Nos.11802137,11702143)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX19_0292)+1 种基金the Natural Science Foundation for Young Scientists of Jiangsu Province of China(Grant No.BK20190468)the Fundamental Research Funds for the Central Universities(Grant Nos.30918011343,30919011259,309190112A1).
文摘In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation,instabilities,and propulsive performance.A hybrid MPI t OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC)systems.A series of cases with the total pressure of 1 MPa,1.5 MPa,2 MPa,and the equivalence ratio of 0.9,1,1.4 are simulated.On one hand,the total pressure shows a significant impact on the instabilities of rotating detonation waves.The instability phenomenon is observed in cases with low total pressure(1 MPa)and weakened with the increase of the total pressure.The total pressure has a small impact on the detonation wave velocity and the specific impulse.On the other hand,the equivalence ratio shows a negligible influence on the instabilities,while it affects the ignition process and accounts for the detonation velocity deficit.It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition.Little difference was observed in the thrust with different equivalence ratios of 0.9,1,and 1.4.The highest specific impulse was obtained in the lean fuel cases,which is around 2700 s.The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE.
文摘An air-cooled probe was designed for measurement of total pressure at combustor outlet;its cooling scheme combined the film cooling and convection cooling.With the aid of CFD technique,cooling effectiveness of the coolant jets at various blow ratios was compared;suitable blow ratios and configuration of film holes were chosen accordingly.The overall cooling performance of the probe was evaluated via CFD technique,the design was improved according to the simulation result,and the cooling effect of the leading edge was obviously strengthened by increasing the local coolant mass flow rate.The results of wind tunnel test indicated that,between Mach numbers 0.2 and 0.4,the probe achieved a high accuracy at various attack angles.The probe was utilized in an annular combustor rig test,the highest temperature reached 1 760 Kand total pressure reaches 1 036 kPa.The result of rig test demonstrates that the coolant film distribution consistent appropriately with the CFD results.
基金Supported bythe Doctoral Foundation of Education Ministry of China (No.20040056037) .
文摘With the increasing application of electric and electronic devices in space and nuclear power stations, the polymeric insulation materials are inevitably exposed to various kinds of environments. Accordingly, it becomes necessary to investigate the effects of the radiation and air pressure on insulation materials. This paper describes the effects of gamma-ray irradiation and reduced pressure on dielectric breakdown of polybutylene naphthalate (PBN) and polybutylene terephthalate (PBT) by applying a DC pulse voltage. Both PBN and PBT were irradiated in air up to 100 kGy and then up to 1 000 kGy with a dose rate of 10 kGy/h by using a60Co gamma-source. The effects of total dose and reduced pressure on the time to dielectric breakdown and discharge quantity were discussed. Obtained results show that, while increasing the total dose, the discharge quantity decreased with PBN, but increased with PBT. With decreasing the air pressure, the discharge quantity increased with PBN, but decreased with PBT. With increasing the total dose, the time to dielectric breakdown increased with PBN, but decreased with PBT. With decreasing the air pressure, the time to dielectric breakdown increased with both PBN and PBT. The experimental results suggest that the chemical structure of polybutylene polymers plays a main role in the result of radiation reaction, which is related to cross-linking and degradation reaction.
基金National Natural Science Foundation(9174110013) Aviation Power Fund(614B090310)
文摘To obtain the outlet temperature of combustor,a kind of high-temperature and water cooling thermocouple was designed.The main factors affecting the results of thermocouple measurement were analyzed after numerical simulation.Results showed that the high-temperature water cooling thermocouple can achieve high temperature measurement under the condition of 2 400 K.With the increase of the distance between the water cooling structure and the stagnation cover,the temperature measurement result was more accurate,and the increase in the area ratio of the inlet and outlet of the stagnation cover within a reasonable range can make the measurement results more accurate.The surface emissivity of the measuring point had a great influence on the radiation error.The pressure and flow rate of cooling water can be effectively reduced after adding zirconia coating onto the surface of the rake body.
文摘This article addresses total fish Hg concentrations (THg) by variations in lake Sediment THg, atmospheric Hg deposition (atmHgdep), and climate, i.e., mean annual precipitation (ppt) and air temperature. The Fish THg data were taken from the 1967-to-2010 Fish Mercury Datalayer (FIMDAC). This compilation was standardized for 12-cm long Yellow Perch in accordance with the USGS National Descriptive Model for Mercury in Fish (NDMMF [1]), and documents Fish THg across 1936 non-contaminated lakes in Canada. About 40% of the standardized Fish THg variations related positively to increasing ppt and Sediment THg, but negatively to increasing mean annual July temperature (TJuly). Only 20% of the Fish THg variations related positively to atmHgdep alone. Increasing TJuly likely influences Fish Hg through increased lake and upslope Hg volatilization, in-fish growth dilution, and temperature-induced demethylization. FIMDAC Fish THg effectively did not change over time while atmHgdep decreased. Similarly, the above Fish Hg trends would likely not change much based on projecting the above observations into the future using current 2070 climate-change projections across Canada and the continental US. Regionally, the projected changes in Fish Hg would mostly increase with increasing ppt. Additional not-yet mapped increases are expected to occur in subarctic regions subject to increasing permafrost decline. Locally, Fish THg would continue to be affected by upwind and upslope pollution sources, and by lake-by-lake changes in water aeration and rates of lake-water inversions.
基金Supported by the National Natural Science Foundation of China(Grant Nos.50676078,50821064)the National High-Tech Research and Development Program of China("863" Project)(Grant No.2006AA05Z230)
文摘A low mass flux steam jet in subcooled water was experimentally investigated.The transition of flow pattern from stable jet to condensation oscillation was observed at relatively high water temperature.The axial total pressures,the axial and radial temperature distributions were measured in the jet region.The results indicated that the pressure and temperature distributions were mainly influenced by the water temperature.The correlations corrected with water temperature were given to predict the dimen-sionless axial pressure peak distance and axial temperature distributions in the jet region,the results showed a good agreement between the predictions and experiments.Moreover,the self-similarity property of the radial temperature was obtained,which agreed well with Gauss distribution.In present work,all the dimensionless properties were mainly dependent on the water temperature but weakly on the nozzle size under a certain steam mass flux.