In order to solve the bearings-only passive localization problem in the presence of erroneous observer position, a novel algorithm based on double side matrix-restricted total least squares (DSMRTLS) is proposed. Fi...In order to solve the bearings-only passive localization problem in the presence of erroneous observer position, a novel algorithm based on double side matrix-restricted total least squares (DSMRTLS) is proposed. First, the aforementioned passive localization problem is transferred to the DSMRTLS problem by deriving a multiplicative structure for both the observation matrix and the observation vector. Second, the corresponding optimization problem of the DSMRTLS problem without constraint is derived, which can be approximated as the generalized Rayleigh quotient minimization problem. Then, the localization solution which is globally optimal and asymptotically unbiased can be got by generalized eigenvalue decomposition. Simulation results verify the rationality of the approximation and the good performance of the proposed algorithm compared with several typical algorithms.展开更多
基金co-supported by Science and Technology on Avionics Integration Laboratory and the Aeronautical Science Foundation of China(No.20105584004)
文摘In order to solve the bearings-only passive localization problem in the presence of erroneous observer position, a novel algorithm based on double side matrix-restricted total least squares (DSMRTLS) is proposed. First, the aforementioned passive localization problem is transferred to the DSMRTLS problem by deriving a multiplicative structure for both the observation matrix and the observation vector. Second, the corresponding optimization problem of the DSMRTLS problem without constraint is derived, which can be approximated as the generalized Rayleigh quotient minimization problem. Then, the localization solution which is globally optimal and asymptotically unbiased can be got by generalized eigenvalue decomposition. Simulation results verify the rationality of the approximation and the good performance of the proposed algorithm compared with several typical algorithms.