The influence of different lubricants on the deformation behaviour of IN 718 alloy was studied. The results show that, with the improvement of lubrication condition, the deformation of the alloy tends to be homogeneou...The influence of different lubricants on the deformation behaviour of IN 718 alloy was studied. The results show that, with the improvement of lubrication condition, the deformation of the alloy tends to be homogeneous, and the resistance of deformation decreases. Consequently, FR 2 glass lubricant is considered to be an ideal choice when the relationship between stress and strain of IN 718 alloy is measured by means of hot compression experiment.展开更多
The dissolved gas analysis (DGA) is an effective method for detecting incipient faults in immersed oil power transformers. In this paper, we investigate the DGA methods and employ the ANSI/IEEE C57.104 standards (guid...The dissolved gas analysis (DGA) is an effective method for detecting incipient faults in immersed oil power transformers. In this paper, we investigate the DGA methods and employ the ANSI/IEEE C57.104 standards (guidelines for the interpretation of gases generated in oil-immersed transformers) and IEC Basic Gas Ratio method to design a heuristic power transformer fault diagnosis tool in practice. The proposed tool is implemented by a MATLAB program and it can provide users a transformer diagnosis result. The user keys in the data of H2, CH4, C2H2, C2H4, and C2H6 gases dissolved from the immersed oil transformer’s insulating oil measured by ASTM D3612. The analyzed results will be represented in texts and figures. The real measured data of the transformer oil were taken from Taiwan Power Company substations to verify the validation and accuracy of the developed diagnosis tool.展开更多
以氨基-1,2,4-三唑和2-偕二硝甲基-5-硝基四唑(HDNMNT)为原料,通过中和反应合成出两种新型含能离子盐——2-偕二硝甲基-5-硝基四唑3-氨基-1,2,4-三唑盐(3-ATDNMNT)和2-偕二硝甲基-5-硝基四唑4-氨基-1,2,4-三唑盐(4-ATDNMNT),收率分别为9...以氨基-1,2,4-三唑和2-偕二硝甲基-5-硝基四唑(HDNMNT)为原料,通过中和反应合成出两种新型含能离子盐——2-偕二硝甲基-5-硝基四唑3-氨基-1,2,4-三唑盐(3-ATDNMNT)和2-偕二硝甲基-5-硝基四唑4-氨基-1,2,4-三唑盐(4-ATDNMNT),收率分别为95.4%和96.7%;利用FT-IR、1 H NMR、13C NMR、15 N NMR及元素分析等方法对其结构进行表征;采用量子化学方法计算了3-ATDNMNT和4-ATDNMNT的爆轰性能;在标准状态下(膨胀比为70∶1),利用最小自由能原理,分别计算了两种离子盐在丁羟复合推进剂中的能量性能。结果表明,3-ATDNMNT的爆速和爆压分别为8.587km/s和33.58GPa,4-ATDNMNT的爆速和爆压分别为8.693km/s和34.31GPa。以3-ATDNMNT部分取代丁羟复合推进剂中的AP后,丁羟复合推进剂的理论比冲可达2 635.7N·s/kg。以4-ATDNMNT部分取代丁羟复合推进剂中的AP后,当HTPB、Al、AP及4-ATDNMNT各组分质量分数分别为10%、5%、15%及70%时,获得该丁羟复合推进剂的最高理论比冲为2 677.2N·s/kg。展开更多
文摘The influence of different lubricants on the deformation behaviour of IN 718 alloy was studied. The results show that, with the improvement of lubrication condition, the deformation of the alloy tends to be homogeneous, and the resistance of deformation decreases. Consequently, FR 2 glass lubricant is considered to be an ideal choice when the relationship between stress and strain of IN 718 alloy is measured by means of hot compression experiment.
文摘The dissolved gas analysis (DGA) is an effective method for detecting incipient faults in immersed oil power transformers. In this paper, we investigate the DGA methods and employ the ANSI/IEEE C57.104 standards (guidelines for the interpretation of gases generated in oil-immersed transformers) and IEC Basic Gas Ratio method to design a heuristic power transformer fault diagnosis tool in practice. The proposed tool is implemented by a MATLAB program and it can provide users a transformer diagnosis result. The user keys in the data of H2, CH4, C2H2, C2H4, and C2H6 gases dissolved from the immersed oil transformer’s insulating oil measured by ASTM D3612. The analyzed results will be represented in texts and figures. The real measured data of the transformer oil were taken from Taiwan Power Company substations to verify the validation and accuracy of the developed diagnosis tool.
文摘以氨基-1,2,4-三唑和2-偕二硝甲基-5-硝基四唑(HDNMNT)为原料,通过中和反应合成出两种新型含能离子盐——2-偕二硝甲基-5-硝基四唑3-氨基-1,2,4-三唑盐(3-ATDNMNT)和2-偕二硝甲基-5-硝基四唑4-氨基-1,2,4-三唑盐(4-ATDNMNT),收率分别为95.4%和96.7%;利用FT-IR、1 H NMR、13C NMR、15 N NMR及元素分析等方法对其结构进行表征;采用量子化学方法计算了3-ATDNMNT和4-ATDNMNT的爆轰性能;在标准状态下(膨胀比为70∶1),利用最小自由能原理,分别计算了两种离子盐在丁羟复合推进剂中的能量性能。结果表明,3-ATDNMNT的爆速和爆压分别为8.587km/s和33.58GPa,4-ATDNMNT的爆速和爆压分别为8.693km/s和34.31GPa。以3-ATDNMNT部分取代丁羟复合推进剂中的AP后,丁羟复合推进剂的理论比冲可达2 635.7N·s/kg。以4-ATDNMNT部分取代丁羟复合推进剂中的AP后,当HTPB、Al、AP及4-ATDNMNT各组分质量分数分别为10%、5%、15%及70%时,获得该丁羟复合推进剂的最高理论比冲为2 677.2N·s/kg。