By detecting the influence of six main ingredients of PM2.5 mineral dusts on the A549 cell morphology, proliferation inhibition rate, micronuclei and DNA damage, to explore the genotoxicity of PM2.5 mineral dusts. (1)...By detecting the influence of six main ingredients of PM2.5 mineral dusts on the A549 cell morphology, proliferation inhibition rate, micronuclei and DNA damage, to explore the genotoxicity of PM2.5 mineral dusts. (1) After exposure to six kinds of dusts of 200 μg/mL concentration for 24 hours, the morphology of A549 cells were observed using Wright-Giemsa staining. (2) After exposure to different concentrations of mineral dusts for 24 hours, the proliferation inhibition rate of A549 cells was detected by MTT assay. (3) Cells were exposed to PM2.5 mineral dusts at a concentration of 200 μg/mL for 24 h. After Wright-Giemsa staining, the rates of micronucleus cells were counted under oil microscope. (4) Observe Comet phenomenon by SCGE electrophoresis, the degree of DNA damage was observed by OTM. (1) Compared to the control group, membrane destruction, nuclear pyknosis and mineral surface adhesion were mainly seen in the Sericite group and Albite group. In the Quartz group and Montmorillonite group, enlarged cell gaps, loosely arranged cells, absorption of a large number of minerals on the cell surface, and cell pyknosis were observed. (2) The proliferation inhibition rate of the six kinds of dusts to A549 cells were (from large to small): KWC-M>Nano-SiO2>KWC-S>KWC-Q>KWC-A>KWC-C.The dust concentration was positively related to the inhibition of cell proliferation rate. (3) With the dusts concentration increased, the incidence of micronuclei gradually increased. The rate was positively correlated to exposure concentration. (4) The six mineral dusts can damage DNA of the A549 cells by dose-response relationship.The higher concentration of the mineral dusts, the more obvious of the DNA damagenation. There’s statistically significant compared with the control group. The six main ingredients of the PM2.5 mineral dusts can change A549 cell morphology from varying degrees, improve proliferation inhibition rate of the cells, increase the number of micronuclei cells, damage DNA.Then we come to the conclusion that PM2.5 mineral dusts can change the genotoxicity of the cells.展开更多
The study aimed at assessing the distribution and composition of dust produced at Pomona Stone Quarry mine in Harare, Zimbabwe. The source contribution to ambient PM2.5 and PM10 dust levels were quantified and their s...The study aimed at assessing the distribution and composition of dust produced at Pomona Stone Quarry mine in Harare, Zimbabwe. The source contribution to ambient PM2.5 and PM10 dust levels were quantified and their spatial distribution from the quarry to the receptor (community). The study also analysed the pH of soils around the mine, SiO2 and Al2O3 levels in quarry dust. Data was collected through direct observations, personal communications, experiments, soil and dust sampling and analyses. Dust sampling was done in January, April and August, to assess the effect of meteorological conditions on dust concentrations in two phases. Phase 1 was conducted during plant shut down (baseline measurements) while phase 2 was carried out during full plant operations (normal operating conditions), to assess the effect of quarry operations on the surrounding areas. Within the quarry production processes, crushing stage was the most dust emitting stage. Phase 1 dust results showed that both respirable (PM2.5) and inhalable (PM10) dust at all stages were below the legal limit, thus below 35 mg/m3 (respirable) and 180 mg/m3 (inhalable). Highest dust levels (209.9 mg/m3 inhalable and 69.01 mg/m3 respirable) were recorded in August, followed by April (206.9 mg/m3 inhalable and 67.52 mg/m3 respirable) then January (206.82 mg/m3 inhalable and 65.27 mg/m3 respirable). At all stages, highest dust concentrations for both parameters were recorded near the plant and decreased with increasing distance from the plant ( ranging from 209.9 mg/m3 - 19.41 mg/m3 inhalable and 69.01 mg/m3 - 14.23 mg/m3 respirable). This was attributed to the effect of particle size. August recorded the biggest area for both parameters falling within the non-permissible category, followed by April then January. The findings also revealed that the quarry dust contained higher levels of SiO2 (0.752 mg/cm3) which were 7 times higher than the recommended 0.1 mg/cm3 (NSSA). Low Al2O3 levels of 0.102 mg/cm3 were recorded and this was considered as environmentally safe. Soils were slightly acidic-alkaline and the t-test results at 95% confidence interval showed no significant difference between the results from site A and B (p = 0.526). It was concluded that quarry dust from Pomona had no significant effects on soil pH but possible health impacts on the receiving community. The study recommended that dust suppression systems such as water sprays, vegetation, air nets and enclosed production process must be implemented to curb dust emissions.展开更多
This study explores how dust from the Ekati Diamond Mine potentially affects the availability and quality of forage on the seasonal range of the Bathurst caribou herd. Understanding the effects of dust as a source of ...This study explores how dust from the Ekati Diamond Mine potentially affects the availability and quality of forage on the seasonal range of the Bathurst caribou herd. Understanding the effects of dust as a source of disturbance is important because the Bathurst caribou population has declined by 93% since the middle 1980s and there are reports that caribou in general may avoid mining projects. There are several challenges for quantifying dust impacts: 1) Natural variations (e.g., topography, natural disturbance, and soil pH) may also impact forage availability and quality for caribou. To minimize their masking effect, we stratified survey sites into seven land cover classes and selected the most populous class (i.e., the dwarf shrub) for assessing the impact. 2) Within class variation (e.g., the proportion of area covered by rocks where vascular plants and lichen do not grow) can further skew the analysis. We eliminated this problem by examining only the area not covered by rocks. 3) Coarse and fine suspended particulates have different spatial coverages, chemical compositions, and pH values. Consequently, their impacts on caribou forage can be different. To distinguish their impacts, we sampled two areas: transects from the Misery Haul Road that has been in active use vs. those from a rarely used spur road outside the Misery Camp. We sampled percent vegetation cover, soil pH, and dust on leaves along these transects during the summers of 2015 and 2016. Our results indicated that the amount of dust on leaves in a zone of ~1000 m from the Misery Haul Road was 3 - 9 times than that of background sites. The zone of reduced lichen percent cover was also about 1000 m. In contrast, these road dust-induced changes in caribou forage were not observed for the dust-free transect from the spur road.展开更多
PM2.5, total suspended particles (TSP) and gas phase samples were collected at two sites of Talzhou, a major e-waste dismantling area in China. Concentrations, seasonal variations, congener profiles, gas-particle pa...PM2.5, total suspended particles (TSP) and gas phase samples were collected at two sites of Talzhou, a major e-waste dismantling area in China. Concentrations, seasonal variations, congener profiles, gas-particle partitioning and size distribution of the atmospheric polychlorinated biphenyls (PCBs) were studied to assess the current state of atmospheric PCBs after the phase out of massive historical dismantling of PCBs containing e-wastes. The average ∑38PCBs concentration in the ambient air (TSP plus gas phase) near the e-waste dismantling area was (12,407 ± 9592) pg/m^3 in winter, which was substantially lower than that found one decade ago. However, the atmospheric PCBs level near the e-waste dismantling area was 54 times of the reference urban site, indicating that the impact of the historical dismantling of PCBs containing e-wastes was still significant. Tri-Penta-CBs were dominant homologues, consisting with their dominant global production. Size distribution of particle-bound PCBs showed that higher chlorinated CBs tended to partition more to the fine particles, facilitating its long range air transportation.展开更多
Northeast China experiences severe atmospheric pollution, with an increasing occurrence of heavy haze episodes. However, the underlying forces driving haze formation during different seasons are poorly understood. In ...Northeast China experiences severe atmospheric pollution, with an increasing occurrence of heavy haze episodes. However, the underlying forces driving haze formation during different seasons are poorly understood. In this study, we explored the spatio-temporal characteristics and causes of haze events in Northeast China by combining a range of data sources(i.e., ground monitoring, satellite-based products, and meteorological products). It was found that the ‘Shenyang-Changchun-Harbin(SCH)'city belt was the most polluted area in the region on an annual scale. The spatial distribution of air quality index(AQI) values had a clear seasonality, with the worst pollution occurring in winter, an approximately oval-shaped polluted area around western Jilin Province in spring, and the best air quality occurring in summer and most of the autumn. The three periods that typically experienced intense haze events were Period I from mid-October to mid-November(i.e., late autumn and early winter), Period II from late-December to February(i.e., the coldest time in winter), and Period III from April to mid-May(i.e., spring). During Period I, strong PM_(2.5) emissions from seasonal crop residue burning and coal burning for winter heating were the dominant reasons for the occurrence of extreme haze events(AQI > 300). Period II had frequent heavy haze events(200 < AQI < 300) in the coldest months of January and February, which were due to high PM_(2.5) emissions from coal burning and vehicle fuel consumption, a lower atmospheric boundary layer, and stagnant atmospheric conditions. Haze events in Period III, with high PM_(10) concentrations, were primarily caused by the regional transportation of windblown dust from degraded grassland in central Inner Mongolia and bare soil in western Jilin Province. Local agricultural tilling could also release PM_(10) and enhance the levels of windblown dust from tilled soil. Better control of coal burning, fuel consumption, and crop residue burning in winter and autumn is urgently needed to address the haze problem in Northeast China.展开更多
Time-series of weekly total carbon (TC) concentrations of fine aerosol particles (PM2.5) in Beijing and Toronto were compared to investigate their respective levels and temporal patterns over two years from August...Time-series of weekly total carbon (TC) concentrations of fine aerosol particles (PM2.5) in Beijing and Toronto were compared to investigate their respective levels and temporal patterns over two years from August 2001 through July 2003. In addition to this comparison, differences in the factors contributing to the observed concentrations and their temporal variations are discussed. Based upon past knowledge about the two megacities with highly contrasting air pollutant levels, it is not surprising that the average TC concentration in Belling (31.5 μg C m^-3) was greater than that in Toronto by a factor of 8.3. Despite their large concentration differences, in both cities TC comprised a similarly large component of PM2.5. TC concentrations exhibited very different seasonal patterns between the two cities. In Beijing, TC experienced higher levels and greater weekly fluctuations in winter whereas in Toronto this behavior was seen in summer. As a result, the greatest gap in TC concentrations between Beijing and Toronto (by a factor of 12.7) occurred in winter, while the smallest gap (a factor of 4.6) was in summer. In Beijing, seasonal variations in the emissions probably played a greater role than meteorology in influencing the TC seasonality, while in Toronto during the warm months more than 80% of the hourly winds were recorded from the south, along with many potential anthropogenic sources for the days with high TC concentrations. This comparison of the differences provides insight into the major factors affecting carbonaceous aerosol in each city.展开更多
A simple method for estimating the contributions of mineral dust to PM2.5, PM10, or TSP is presented. The method is based on the assumption of external mixing of two types of particles with different PM2.5/PM10 ratios...A simple method for estimating the contributions of mineral dust to PM2.5, PM10, or TSP is presented. The method is based on the assumption of external mixing of two types of particles with different PM2.5/PM10 ratios, The method was applied to local and transported dust events observed in Tsukuba, Japan, and was compared with collocated polarization lidar measurements. The method was then applied to three dust events that occurred in Oki, Rishiri, and Ochiishi,Japan, in 2012. The results showed that the method was useful for detecting mineral dust and for qualitatively describing the mixing of dust with anthropogenic aerosols.展开更多
Indoor air quality has become an important matter for health and safety. Most manufacturing processes generate aerosols. In the metal cutting industry, dry machining processes are accompanied by dust emission (fogs, f...Indoor air quality has become an important matter for health and safety. Most manufacturing processes generate aerosols. In the metal cutting industry, dry machining processes are accompanied by dust emission (fogs, fine chips and metallic dust in both micrometers and nanometers scales) that has impacts on workers’ health. This research work aimed to understand and reduce the harmful impacts of the machining process on the occupational safety. In this study, an experimental investigation was carried out on fine and ultrafine metallic dust emission during slot milling of 2024-T351, 6061-T6 and 7075-T6 aluminum alloy in dry conditions. It was confirmed that the cutting conditions influence significantly the specific surface area of ultrafine particles. It was also found that the cutting speed is a determinant factor for specific surface area of ultrafine particles and control during the slot milling process.展开更多
基金Project supported by the State Key Program of National Natural Science of China(No.41130746)
文摘By detecting the influence of six main ingredients of PM2.5 mineral dusts on the A549 cell morphology, proliferation inhibition rate, micronuclei and DNA damage, to explore the genotoxicity of PM2.5 mineral dusts. (1) After exposure to six kinds of dusts of 200 μg/mL concentration for 24 hours, the morphology of A549 cells were observed using Wright-Giemsa staining. (2) After exposure to different concentrations of mineral dusts for 24 hours, the proliferation inhibition rate of A549 cells was detected by MTT assay. (3) Cells were exposed to PM2.5 mineral dusts at a concentration of 200 μg/mL for 24 h. After Wright-Giemsa staining, the rates of micronucleus cells were counted under oil microscope. (4) Observe Comet phenomenon by SCGE electrophoresis, the degree of DNA damage was observed by OTM. (1) Compared to the control group, membrane destruction, nuclear pyknosis and mineral surface adhesion were mainly seen in the Sericite group and Albite group. In the Quartz group and Montmorillonite group, enlarged cell gaps, loosely arranged cells, absorption of a large number of minerals on the cell surface, and cell pyknosis were observed. (2) The proliferation inhibition rate of the six kinds of dusts to A549 cells were (from large to small): KWC-M>Nano-SiO2>KWC-S>KWC-Q>KWC-A>KWC-C.The dust concentration was positively related to the inhibition of cell proliferation rate. (3) With the dusts concentration increased, the incidence of micronuclei gradually increased. The rate was positively correlated to exposure concentration. (4) The six mineral dusts can damage DNA of the A549 cells by dose-response relationship.The higher concentration of the mineral dusts, the more obvious of the DNA damagenation. There’s statistically significant compared with the control group. The six main ingredients of the PM2.5 mineral dusts can change A549 cell morphology from varying degrees, improve proliferation inhibition rate of the cells, increase the number of micronuclei cells, damage DNA.Then we come to the conclusion that PM2.5 mineral dusts can change the genotoxicity of the cells.
文摘The study aimed at assessing the distribution and composition of dust produced at Pomona Stone Quarry mine in Harare, Zimbabwe. The source contribution to ambient PM2.5 and PM10 dust levels were quantified and their spatial distribution from the quarry to the receptor (community). The study also analysed the pH of soils around the mine, SiO2 and Al2O3 levels in quarry dust. Data was collected through direct observations, personal communications, experiments, soil and dust sampling and analyses. Dust sampling was done in January, April and August, to assess the effect of meteorological conditions on dust concentrations in two phases. Phase 1 was conducted during plant shut down (baseline measurements) while phase 2 was carried out during full plant operations (normal operating conditions), to assess the effect of quarry operations on the surrounding areas. Within the quarry production processes, crushing stage was the most dust emitting stage. Phase 1 dust results showed that both respirable (PM2.5) and inhalable (PM10) dust at all stages were below the legal limit, thus below 35 mg/m3 (respirable) and 180 mg/m3 (inhalable). Highest dust levels (209.9 mg/m3 inhalable and 69.01 mg/m3 respirable) were recorded in August, followed by April (206.9 mg/m3 inhalable and 67.52 mg/m3 respirable) then January (206.82 mg/m3 inhalable and 65.27 mg/m3 respirable). At all stages, highest dust concentrations for both parameters were recorded near the plant and decreased with increasing distance from the plant ( ranging from 209.9 mg/m3 - 19.41 mg/m3 inhalable and 69.01 mg/m3 - 14.23 mg/m3 respirable). This was attributed to the effect of particle size. August recorded the biggest area for both parameters falling within the non-permissible category, followed by April then January. The findings also revealed that the quarry dust contained higher levels of SiO2 (0.752 mg/cm3) which were 7 times higher than the recommended 0.1 mg/cm3 (NSSA). Low Al2O3 levels of 0.102 mg/cm3 were recorded and this was considered as environmentally safe. Soils were slightly acidic-alkaline and the t-test results at 95% confidence interval showed no significant difference between the results from site A and B (p = 0.526). It was concluded that quarry dust from Pomona had no significant effects on soil pH but possible health impacts on the receiving community. The study recommended that dust suppression systems such as water sprays, vegetation, air nets and enclosed production process must be implemented to curb dust emissions.
文摘This study explores how dust from the Ekati Diamond Mine potentially affects the availability and quality of forage on the seasonal range of the Bathurst caribou herd. Understanding the effects of dust as a source of disturbance is important because the Bathurst caribou population has declined by 93% since the middle 1980s and there are reports that caribou in general may avoid mining projects. There are several challenges for quantifying dust impacts: 1) Natural variations (e.g., topography, natural disturbance, and soil pH) may also impact forage availability and quality for caribou. To minimize their masking effect, we stratified survey sites into seven land cover classes and selected the most populous class (i.e., the dwarf shrub) for assessing the impact. 2) Within class variation (e.g., the proportion of area covered by rocks where vascular plants and lichen do not grow) can further skew the analysis. We eliminated this problem by examining only the area not covered by rocks. 3) Coarse and fine suspended particulates have different spatial coverages, chemical compositions, and pH values. Consequently, their impacts on caribou forage can be different. To distinguish their impacts, we sampled two areas: transects from the Misery Haul Road that has been in active use vs. those from a rarely used spur road outside the Misery Camp. We sampled percent vegetation cover, soil pH, and dust on leaves along these transects during the summers of 2015 and 2016. Our results indicated that the amount of dust on leaves in a zone of ~1000 m from the Misery Haul Road was 3 - 9 times than that of background sites. The zone of reduced lichen percent cover was also about 1000 m. In contrast, these road dust-induced changes in caribou forage were not observed for the dust-free transect from the spur road.
基金supported by the National Natural Science Foundation of China (No.40775084)the Shanghai Leading Academic Disciplines (No.S030109)
文摘PM2.5, total suspended particles (TSP) and gas phase samples were collected at two sites of Talzhou, a major e-waste dismantling area in China. Concentrations, seasonal variations, congener profiles, gas-particle partitioning and size distribution of the atmospheric polychlorinated biphenyls (PCBs) were studied to assess the current state of atmospheric PCBs after the phase out of massive historical dismantling of PCBs containing e-wastes. The average ∑38PCBs concentration in the ambient air (TSP plus gas phase) near the e-waste dismantling area was (12,407 ± 9592) pg/m^3 in winter, which was substantially lower than that found one decade ago. However, the atmospheric PCBs level near the e-waste dismantling area was 54 times of the reference urban site, indicating that the impact of the historical dismantling of PCBs containing e-wastes was still significant. Tri-Penta-CBs were dominant homologues, consisting with their dominant global production. Size distribution of particle-bound PCBs showed that higher chlorinated CBs tended to partition more to the fine particles, facilitating its long range air transportation.
基金Under the auspices of National Key R&D Program of China(No.2017YFC0212303,2017YFC0212304,2017YFC0212301)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDB-SSW-DQC045)+1 种基金Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2017275)National Natural Science Foundation of China(No.41775116,41771071,41575129)
文摘Northeast China experiences severe atmospheric pollution, with an increasing occurrence of heavy haze episodes. However, the underlying forces driving haze formation during different seasons are poorly understood. In this study, we explored the spatio-temporal characteristics and causes of haze events in Northeast China by combining a range of data sources(i.e., ground monitoring, satellite-based products, and meteorological products). It was found that the ‘Shenyang-Changchun-Harbin(SCH)'city belt was the most polluted area in the region on an annual scale. The spatial distribution of air quality index(AQI) values had a clear seasonality, with the worst pollution occurring in winter, an approximately oval-shaped polluted area around western Jilin Province in spring, and the best air quality occurring in summer and most of the autumn. The three periods that typically experienced intense haze events were Period I from mid-October to mid-November(i.e., late autumn and early winter), Period II from late-December to February(i.e., the coldest time in winter), and Period III from April to mid-May(i.e., spring). During Period I, strong PM_(2.5) emissions from seasonal crop residue burning and coal burning for winter heating were the dominant reasons for the occurrence of extreme haze events(AQI > 300). Period II had frequent heavy haze events(200 < AQI < 300) in the coldest months of January and February, which were due to high PM_(2.5) emissions from coal burning and vehicle fuel consumption, a lower atmospheric boundary layer, and stagnant atmospheric conditions. Haze events in Period III, with high PM_(10) concentrations, were primarily caused by the regional transportation of windblown dust from degraded grassland in central Inner Mongolia and bare soil in western Jilin Province. Local agricultural tilling could also release PM_(10) and enhance the levels of windblown dust from tilled soil. Better control of coal burning, fuel consumption, and crop residue burning in winter and autumn is urgently needed to address the haze problem in Northeast China.
基金funded by National Natural Science Foundation of China(NSFC)projects(Grant Nos.20322203 and 40675079)the National Science Fund for Distinguished Young Scholars of NSFC(Grant No.20625722)
文摘Time-series of weekly total carbon (TC) concentrations of fine aerosol particles (PM2.5) in Beijing and Toronto were compared to investigate their respective levels and temporal patterns over two years from August 2001 through July 2003. In addition to this comparison, differences in the factors contributing to the observed concentrations and their temporal variations are discussed. Based upon past knowledge about the two megacities with highly contrasting air pollutant levels, it is not surprising that the average TC concentration in Belling (31.5 μg C m^-3) was greater than that in Toronto by a factor of 8.3. Despite their large concentration differences, in both cities TC comprised a similarly large component of PM2.5. TC concentrations exhibited very different seasonal patterns between the two cities. In Beijing, TC experienced higher levels and greater weekly fluctuations in winter whereas in Toronto this behavior was seen in summer. As a result, the greatest gap in TC concentrations between Beijing and Toronto (by a factor of 12.7) occurred in winter, while the smallest gap (a factor of 4.6) was in summer. In Beijing, seasonal variations in the emissions probably played a greater role than meteorology in influencing the TC seasonality, while in Toronto during the warm months more than 80% of the hourly winds were recorded from the south, along with many potential anthropogenic sources for the days with high TC concentrations. This comparison of the differences provides insight into the major factors affecting carbonaceous aerosol in each city.
文摘A simple method for estimating the contributions of mineral dust to PM2.5, PM10, or TSP is presented. The method is based on the assumption of external mixing of two types of particles with different PM2.5/PM10 ratios, The method was applied to local and transported dust events observed in Tsukuba, Japan, and was compared with collocated polarization lidar measurements. The method was then applied to three dust events that occurred in Oki, Rishiri, and Ochiishi,Japan, in 2012. The results showed that the method was useful for detecting mineral dust and for qualitatively describing the mixing of dust with anthropogenic aerosols.
文摘Indoor air quality has become an important matter for health and safety. Most manufacturing processes generate aerosols. In the metal cutting industry, dry machining processes are accompanied by dust emission (fogs, fine chips and metallic dust in both micrometers and nanometers scales) that has impacts on workers’ health. This research work aimed to understand and reduce the harmful impacts of the machining process on the occupational safety. In this study, an experimental investigation was carried out on fine and ultrafine metallic dust emission during slot milling of 2024-T351, 6061-T6 and 7075-T6 aluminum alloy in dry conditions. It was confirmed that the cutting conditions influence significantly the specific surface area of ultrafine particles. It was also found that the cutting speed is a determinant factor for specific surface area of ultrafine particles and control during the slot milling process.