Multi-level inverters(MLIs)have become popular in different applications such as industrial power control systems and distributed generations.There are different forms of MLIs.The cascaded MLIs(CMLIs)have some special...Multi-level inverters(MLIs)have become popular in different applications such as industrial power control systems and distributed generations.There are different forms of MLIs.The cascaded MLIs(CMLIs)have some special advantages among them such as more different output voltage levels using the same number of components and higher power quality.In this paper,a 27-level inverter switching algorithm considering total harmonic distortion(THD)minimization is investigated.Switching angles of the inverter switches are achieved by minimizing a THD-based objective function.In order to minimize the THD-based objective function,the hyper-spherical search(HSS)algorithm,as a novel optimization algorithm,is improved and the results of improved HSS(IHSS)are compared with HSS algorithm and other five evolutionary algorithms to show the advantages of IHSS algorithm.展开更多
This multilevel inverter methodology is the center of focus among researchers in recent era.It has been focused due to its advantages over existing topologies,drawbacks and improvement of power quality,Multi-level inv...This multilevel inverter methodology is the center of focus among researchers in recent era.It has been focused due to its advantages over existing topologies,drawbacks and improvement of power quality,Multi-level inverter has the ability to generate nearly sinusoidal waves.This sinusoidal wave can be further improved by increasing the level of output voltage or with the help of filter design,and this manuscript presents single-phase Multi cell Multi-Level Inverter(MLI).It has been considered for reducing component count to get a higher number of output voltage levels and lower Total harmonics distortion profile.It comprises with four symmetric DC input voltage and 10 IGBT switches to produces stepped output of 9 level,and when deploy asymmetric Dc voltage source the same circuit will produce 31 level output with some changes in firing scheme,moreover this circuit is the family of cascaded hybrid bridge inverter so this circuit covered advantage of CHB MLI,This circuit uses lower no.of switch as compared to existing conventional MLIs such as FC-MLI,CHB-MLI,NPC-MLI,This paper also provides one of most pertinent controls and modulation mechanisms for a MLI using a hybrid reference/carrier-oriented sinusoidal PWM mechanism.At last,simulated outcomes are to validate the performance of both architectures in MLI structure as well as verify the concept.展开更多
In recent day’s power distribution system is distress from acute power quality issues.In this work,for compensating Power Quality(PQ)disturbances a seven level cascaded H-bridge inverter is implemented in distributio...In recent day’s power distribution system is distress from acute power quality issues.In this work,for compensating Power Quality(PQ)disturbances a seven level cascaded H-bridge inverter is implemented in distribution static com-pensator which protects power quality problems in currents.Distribution Static Compensator(DSTATCOM)aid to enhances power factor and removes total har-monic distortion which is drawn from non-linear load.The D–Q reference theory based hysteresis current controller is employed to generate reference current for compensation of harmonics and reactive power,additionally Probabilistic Neural Network(PNN)classifier is used which easily separates exact harmonics.In the meantime fuzzy logic controller is also used to maintain capacitor DC-link poten-tial.When comparing to PI controller it decreases steady state time and reduces maximum peak overshoot.Cascaded H-bridge multilevel inverter converts direct current to Alternating current,through inductor opposite harmonics are injected in Power Control Centre reduces source current harmonics and reactive power.The implementation of CHBMLI in distribution STATic COMpensator simulation model is simulated by means of MATLAB.展开更多
Power quality challenges have generated a lot of disputes between utilities,customers,network operators,and equipment manufacturers around the world as regards the share of responsibility for power quality solutions,t...Power quality challenges have generated a lot of disputes between utilities,customers,network operators,and equipment manufacturers around the world as regards the share of responsibility for power quality solutions,this results in different levels of financial and technical losses for both the network operators and the customers.One of the major consequences of the operation of heavy-duty factories globally is the corruption of power quality at the point of common coupling(PCC).In order to quantify the harmonics contribution at the PCC by industrial consumers,this paper presents three-phase total harmonics distortion of current(THDi)prediction model at the PCC.The proposed artificial neural network(ANN)models use a multilayer perceptron neural network(MLPN)to predict three-phase total harmonic distortion.The input parameter used in the models is easily measured with basic power meters.The model was trained with input parameters captured at 33 kV and 132 kV voltage levels using power quality meters at five(5)different steel manufacturing plants.Eight(8)different models were designed,trained,validated,and tested with different combinations of input parameters,number of hidden layers,and number of neurons in the hidden layer.The results show that the model with two hidden layers which uses four major power parameters(Current,apparent power,reactive and active power)as input parameters in the training model had the best performance with a 95.5%coefficient of correlation between the measured THDi and the predicted THDi.展开更多
Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used t...Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.展开更多
Like others countries of the world, in Niger also, we are witnessing an increasing use of non-linear electric loads in the domestic, hospital and industrial sectors. However, these loads degrade the shape of the elect...Like others countries of the world, in Niger also, we are witnessing an increasing use of non-linear electric loads in the domestic, hospital and industrial sectors. However, these loads degrade the shape of the electrical signal and cause disastrous effects to the equipment of the distribution system and the devices which are connected to the network. This article highlights the presence of electric harmonics in the distribution network in Niamey city. In order to do this, measurements were taken at the secondary level of the substations using an energy quality analyze r (FLUKE 1735). By using this measuring instrument, we quantified the voltage and current Total Harmonic Distortion (THD) in the three substations. The results obtained show that, although the statutable rates set by the standards are not exceeded for phase conductors, the neutral contains a very critical percentage of distortion on the residential and hospital substations. Moreover, this assessment made it possible to observe the variation of harmonics in the presence of voltage drops.展开更多
Multilevel inverter (MLI) is one of the most efficient power converters which are especially suited for high power applications with reduced harmonics. MLI not only achieves high output power and is also used in renew...Multilevel inverter (MLI) is one of the most efficient power converters which are especially suited for high power applications with reduced harmonics. MLI not only achieves high output power and is also used in renewable energy sources such as photovoltaic, wind and fuel cells. Among various topologies of MLI, this paper mainly focuses on cascaded MLI with three unequal DC sources called asymmetric cascaded MLI which reduces the number of power switches. Various modulation techniques are also reviewed in literature [1]. In this paper we focus on sinusoidal (or) multicarrier pulse width modulation (SPWM) which improves the output voltage at lower modulation index for obtaining lower Total Harmonic Distortion (THD) level. The gating signal for the 13-level hybrid inverter using SPWM technique is generated using Field Programmable Gate Array (FPGA) processor. The proposed modulation technique results in reduced percentage of THD, but lower order harmonics are not eliminated. So a new technique called Selective Harmonic Elimination (SHE) is also implemented in order to reduce the lower order harmonics. The optimum switching angles are determined for obtaining minimum THD. The performance evaluation of the proposed PWM inverter is verified using an experimental model of 13-level cascaded hybrid MLI and compared with MATLAB/SIMULINK model.展开更多
A large amount of switching loss occurs in the inverter. From this point of view, an inverter design should be optimized for which size and cost will be minimum along with increasing efficiency. The main aim of this p...A large amount of switching loss occurs in the inverter. From this point of view, an inverter design should be optimized for which size and cost will be minimum along with increasing efficiency. The main aim of this paper is the analysis and development of single-phase and three-phase inverter to design with MOSFET and IGBT as power elements by sinusoidal pulse width modulation (SPWM) technique using MATLAB Simulink software and compare their difference with the practical inverter. This work proposes different multilevel stages for the cascaded H-Bridge inverter to enhance the output voltages. Then compare their performance, harmonic distortion, and frequency spectrum. The hardware of an inverter circuit has been developed using the SG3524 microcontroller. The main goal of this design is to generate a sine wave with fewer harmonics, while keeping the cost and complexity of the circuit low. The designed inverter has undergone testing with different AC loads and is primarily intended for low-power applications, as lamps, fans, and chargers. This design aims to provide a reliable and efficient inverter solution for these specific applications.展开更多
文摘Multi-level inverters(MLIs)have become popular in different applications such as industrial power control systems and distributed generations.There are different forms of MLIs.The cascaded MLIs(CMLIs)have some special advantages among them such as more different output voltage levels using the same number of components and higher power quality.In this paper,a 27-level inverter switching algorithm considering total harmonic distortion(THD)minimization is investigated.Switching angles of the inverter switches are achieved by minimizing a THD-based objective function.In order to minimize the THD-based objective function,the hyper-spherical search(HSS)algorithm,as a novel optimization algorithm,is improved and the results of improved HSS(IHSS)are compared with HSS algorithm and other five evolutionary algorithms to show the advantages of IHSS algorithm.
文摘This multilevel inverter methodology is the center of focus among researchers in recent era.It has been focused due to its advantages over existing topologies,drawbacks and improvement of power quality,Multi-level inverter has the ability to generate nearly sinusoidal waves.This sinusoidal wave can be further improved by increasing the level of output voltage or with the help of filter design,and this manuscript presents single-phase Multi cell Multi-Level Inverter(MLI).It has been considered for reducing component count to get a higher number of output voltage levels and lower Total harmonics distortion profile.It comprises with four symmetric DC input voltage and 10 IGBT switches to produces stepped output of 9 level,and when deploy asymmetric Dc voltage source the same circuit will produce 31 level output with some changes in firing scheme,moreover this circuit is the family of cascaded hybrid bridge inverter so this circuit covered advantage of CHB MLI,This circuit uses lower no.of switch as compared to existing conventional MLIs such as FC-MLI,CHB-MLI,NPC-MLI,This paper also provides one of most pertinent controls and modulation mechanisms for a MLI using a hybrid reference/carrier-oriented sinusoidal PWM mechanism.At last,simulated outcomes are to validate the performance of both architectures in MLI structure as well as verify the concept.
文摘In recent day’s power distribution system is distress from acute power quality issues.In this work,for compensating Power Quality(PQ)disturbances a seven level cascaded H-bridge inverter is implemented in distribution static com-pensator which protects power quality problems in currents.Distribution Static Compensator(DSTATCOM)aid to enhances power factor and removes total har-monic distortion which is drawn from non-linear load.The D–Q reference theory based hysteresis current controller is employed to generate reference current for compensation of harmonics and reactive power,additionally Probabilistic Neural Network(PNN)classifier is used which easily separates exact harmonics.In the meantime fuzzy logic controller is also used to maintain capacitor DC-link poten-tial.When comparing to PI controller it decreases steady state time and reduces maximum peak overshoot.Cascaded H-bridge multilevel inverter converts direct current to Alternating current,through inductor opposite harmonics are injected in Power Control Centre reduces source current harmonics and reactive power.The implementation of CHBMLI in distribution STATic COMpensator simulation model is simulated by means of MATLAB.
文摘Power quality challenges have generated a lot of disputes between utilities,customers,network operators,and equipment manufacturers around the world as regards the share of responsibility for power quality solutions,this results in different levels of financial and technical losses for both the network operators and the customers.One of the major consequences of the operation of heavy-duty factories globally is the corruption of power quality at the point of common coupling(PCC).In order to quantify the harmonics contribution at the PCC by industrial consumers,this paper presents three-phase total harmonics distortion of current(THDi)prediction model at the PCC.The proposed artificial neural network(ANN)models use a multilayer perceptron neural network(MLPN)to predict three-phase total harmonic distortion.The input parameter used in the models is easily measured with basic power meters.The model was trained with input parameters captured at 33 kV and 132 kV voltage levels using power quality meters at five(5)different steel manufacturing plants.Eight(8)different models were designed,trained,validated,and tested with different combinations of input parameters,number of hidden layers,and number of neurons in the hidden layer.The results show that the model with two hidden layers which uses four major power parameters(Current,apparent power,reactive and active power)as input parameters in the training model had the best performance with a 95.5%coefficient of correlation between the measured THDi and the predicted THDi.
文摘Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.
文摘Like others countries of the world, in Niger also, we are witnessing an increasing use of non-linear electric loads in the domestic, hospital and industrial sectors. However, these loads degrade the shape of the electrical signal and cause disastrous effects to the equipment of the distribution system and the devices which are connected to the network. This article highlights the presence of electric harmonics in the distribution network in Niamey city. In order to do this, measurements were taken at the secondary level of the substations using an energy quality analyze r (FLUKE 1735). By using this measuring instrument, we quantified the voltage and current Total Harmonic Distortion (THD) in the three substations. The results obtained show that, although the statutable rates set by the standards are not exceeded for phase conductors, the neutral contains a very critical percentage of distortion on the residential and hospital substations. Moreover, this assessment made it possible to observe the variation of harmonics in the presence of voltage drops.
文摘Multilevel inverter (MLI) is one of the most efficient power converters which are especially suited for high power applications with reduced harmonics. MLI not only achieves high output power and is also used in renewable energy sources such as photovoltaic, wind and fuel cells. Among various topologies of MLI, this paper mainly focuses on cascaded MLI with three unequal DC sources called asymmetric cascaded MLI which reduces the number of power switches. Various modulation techniques are also reviewed in literature [1]. In this paper we focus on sinusoidal (or) multicarrier pulse width modulation (SPWM) which improves the output voltage at lower modulation index for obtaining lower Total Harmonic Distortion (THD) level. The gating signal for the 13-level hybrid inverter using SPWM technique is generated using Field Programmable Gate Array (FPGA) processor. The proposed modulation technique results in reduced percentage of THD, but lower order harmonics are not eliminated. So a new technique called Selective Harmonic Elimination (SHE) is also implemented in order to reduce the lower order harmonics. The optimum switching angles are determined for obtaining minimum THD. The performance evaluation of the proposed PWM inverter is verified using an experimental model of 13-level cascaded hybrid MLI and compared with MATLAB/SIMULINK model.
文摘A large amount of switching loss occurs in the inverter. From this point of view, an inverter design should be optimized for which size and cost will be minimum along with increasing efficiency. The main aim of this paper is the analysis and development of single-phase and three-phase inverter to design with MOSFET and IGBT as power elements by sinusoidal pulse width modulation (SPWM) technique using MATLAB Simulink software and compare their difference with the practical inverter. This work proposes different multilevel stages for the cascaded H-Bridge inverter to enhance the output voltages. Then compare their performance, harmonic distortion, and frequency spectrum. The hardware of an inverter circuit has been developed using the SG3524 microcontroller. The main goal of this design is to generate a sine wave with fewer harmonics, while keeping the cost and complexity of the circuit low. The designed inverter has undergone testing with different AC loads and is primarily intended for low-power applications, as lamps, fans, and chargers. This design aims to provide a reliable and efficient inverter solution for these specific applications.