期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Effect of Soil Enzymes and Polysaccharides Secreted by the Roots of Salvia miltiorrhiza Bunge under Drought,High Temperature,and Nitrogen and Phosphorus Deficits
1
作者 Yong Qin Xiaoyu Li +3 位作者 Yanhong Wu Hai Wang Guiqi Han Zhuyun Yan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期119-135,共17页
Root exudates serve as crucial mediators for information exchange between plants and soil,and are an important evolutionary mechanism for plants’adaptation to environmental changes.In this study,15 different abiotic ... Root exudates serve as crucial mediators for information exchange between plants and soil,and are an important evolutionary mechanism for plants’adaptation to environmental changes.In this study,15 different abiotic stress models were established using various stress factors,including drought(D),high temperature(T),nitrogen deficiency(N),phosphorus deficiency(P),and their combinations.We investigated their effects on the seedling growth of Salvia miltiorrhiza Bunge and the activities of Solid-Urease(S-UE),Solid-Nitrite Reductase(S-NiR),Solid-Nitrate Reductase(S-NR),Solid-Phosphotransferase(S-PT),and Solid-Catalase(S-CAT),as well as the contents of polysaccharides in the culture medium.The results showed that the growth of S.miltiorrhiza was inhibited under 15 stress conditions.Among them,13 stress conditions increased the root-shoot ratio.These 15 stress conditions significantly reduced the activity of S-NR,two combinations significantly improved the activity of S-NIR,they were synergistic stresses of high temperature and nitrogen deficiency(TN),and synergistic stresses of drought and nitrogen deficiency(DN)(p<0.05).The activity of S-UE was significantly improved under N,D,T,synergistic stresses of drought and high temperature(DT),DN,synergistic stresses of drought and phosphorus deficiency(DP),and synergistic stresses of high temperature,nitrogen,and phosphorus deficiency(TNP)stress conditions(p<0.05).Most stress combinations reduced the activity of S-PT,but D and T significantly improved it.(p<0.05).The N,DN,and TN stress conditions significantly reduced S-CAT activity.The P,DT,and synergistic stresses of drought,high temperature,and phosphorus deficiency(DTP)significantly decreased the total polysaccharide content of the soil(p<0.05).The research suggested that abiotic stress hindered the growth of S.miltiorrhiza and altered the behavior of root secretion.Roots regulated the secretion of several substances in response to various abiotic stresses,including soil nitrogen cycle enzymes,phosphorus transport-related enzymes,and antioxidant enzymes.In conclusion,plants regulate the utilization of rhizosphere substances in response to abiotic stresses by modulating the exudation of soil enzymes and polysaccharides by the root system.At the same time,soil carbon sequestration was affected by the adverse environment,which restricted the input of organic matter into the soil. 展开更多
关键词 Abiotic stress Salvia miltiorrhiza soil enzymes total polysaccharides soil carbon sequestration
下载PDF
Fresh Processing Technology in Polygonatum odoratum Production Area and Its Comparison with Traditional Processing
2
作者 Miao YANG Chufan PENG +4 位作者 Haixia LU Rufeng LIANG Hui TANG Zhongmei QIN Shengjiu GU 《Medicinal Plant》 2024年第1期38-40,44,共4页
[Objectives]To compare the effects of traditional processing and fresh processing on the quality of Polygonatum odoratum decoction piece.[Methods]The effects of fresh processing and traditional processing on the quali... [Objectives]To compare the effects of traditional processing and fresh processing on the quality of Polygonatum odoratum decoction piece.[Methods]The effects of fresh processing and traditional processing on the quality of P.odoratum decoction piece were compared and analyzed with appearance characteristics,total ash content,extract content,total polysaccharides content,and total flavonoids content as the evaluation indexes.[Results]Fresh processing method in different production areas has different effects on P.odoratum decoction piece.P.odoratum was dried in oven of 50℃.When moisture content was 41.44%-59.67%,it was cut.After complete drying at 50℃,the moisture content of dried P.odoratum was 8.94%-9.60%,and ethanol-soluble extract content was 77.29%-78.20%,and water-soluble extract was 77.7%-78.14%.At this time,the appearance characteristics of section of P.odoratum decoction piece were better than that of traditional processing,which was yellowish white.The total polysaccharide content was higher than that of traditional processing,and the content of total flavonoids was statistically significant different from that of traditional processing.[Conclusions]The quality of P.odoratum decoction piece by fresh processing is better than that of the traditional processing,and it is feasible to use fresh processing. 展开更多
关键词 Processing technique Plygonatum odoratum Fresh processing total polysaccharide total flavonoids
下载PDF
Effects of Different Drying Processes on the Effective Components of Stichopus japonicus Viscera
3
作者 张轩铭 侯海荣 +4 位作者 陈玉峰 于涛 彭德杰 刘可春 韩利文 《Agricultural Science & Technology》 CAS 2016年第8期1944-1946,共3页
Drying is a basic link in seafood processing, and the effects of forced air drying and vacuum drying on the effective components of Stichopus japonicus viscera were compared with the moisture, total saponin and polysa... Drying is a basic link in seafood processing, and the effects of forced air drying and vacuum drying on the effective components of Stichopus japonicus viscera were compared with the moisture, total saponin and polysaccharide contents as the detection indexes. The contents of effective components obtained using forced air drying were slightly lower than those obtained using vacuum drying, but the forced air drying method used short drying time and low economic energy consumption. Excellent drying effects and low cost of forced air drying made it can be adapted to the requirements of large-scale production applications. 展开更多
关键词 Stichopus japonicus Forced air drying Vacuum drying total saponin and polysaccharide
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部