In this study, a pressure cell apparatus is developed to investigate the early age evolution of the strength and deformation behaviour of cemented paste backfill(CPB) when subjected to various loading conditions under...In this study, a pressure cell apparatus is developed to investigate the early age evolution of the strength and deformation behaviour of cemented paste backfill(CPB) when subjected to various loading conditions under different curing scenarios. The different curing scenarios that are simulated include:(1)drained and undrained conditions,(2) different filling rates,(3) different filling sequences, and(4) different curing stresses. The findings show that drainage, curing stress, curing time and filling rate influence the mechanical and deformation behaviours of CPB materials. The coupled effects of consolidation, drainage and suction contribute to the strength development of drained CPB subjected to curing stress. On the other hand, particle rearrangement caused by the applied pressure and suction development due to self-desiccation plays a significant role in the strength gain of undrained CPB cured under stress.Furthermore, curing stress induces slightly faster rate of cement hydration, which can contribute to strength acquisition.展开更多
Cemented paste backfill(CPB) is largely used in underground mines worldwide.A key issue associated with application of CPB is to estimate the stresses in backfilled stopes and on barricades.Recent numerical and experi...Cemented paste backfill(CPB) is largely used in underground mines worldwide.A key issue associated with application of CPB is to estimate the stresses in backfilled stopes and on barricades.Recent numerical and experimental results show that arching effect is absent shortly after the placement of CPB in stopes.However,stress decreases in barricade drift with increasing distance between the measurement points and drawpoint have also been observed,demonstrating arching effect shortly after the pouring of CPB.To explain these paradoxes,CPB is considered as Bingham fluid having a yield shear stress.Three dimensional analytical solutions are proposed to evaluate the short-term total stresses in backfilled stopes and on barricades,accounting for the CPB's yield shear stress-induced arching effect.Stress diminution due to such arching effect in the backfilled stopes and on barricades is indeed obtained.But the reduction becomes insignificant using typical yield shear stress and stope geometry.More analyses indicate that the typical yield shear stress values do not fully correspond to field conditions where the yield shear stress would increase exponentially due to apparent consolidation(loss of water by drainage,a phenomenon similar to the desiccation of overly saturated fine-grained materials).展开更多
The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinso...The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinson pressure bar(SHPB)was utilized to investigate the high strain rate compressive behavior of CPB with dynamic loads of 0.4,0.8,and 1.2 MPa.And the failure modes were determined by macro and micro analysis.CPB with different cement-to-tailings ratios,solid mass concentrations,and curing ages was prepared to conduct the SHPB test.The results showed that increasing the cement content,tailings content,and curing age can improve the dynamic compressive strength and elastic modulus.Under an impact load,a higher strain rate can lead to larger increasing times of the dynamic compressive strength when compared with static loading.And the dynamic compressive strength of CPB has an exponential correlation with the strain rate.The macroscopic failure modes indicated that CPB is more seriously damaged under dynamic loading.The local damage was enhanced,and fine cracks were formed in the interior of the CPB.This is because the CPB cannot dissipate the energy of the high strain rate stress wave in a short loading period.展开更多
Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requi...Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes,where many factors can have significant effects on the consolidation,including drainage condition and cement addition.In this paper,the prepared tailings slurry with different cement contents(0,4.76wt%,and 6.25wt%)was poured into1.2 m-high columns,which allowed three drainage scenarios(undrained,partial lateral drainage near the bottom part,and full lateral drainage boundaries)to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry.The consolidation behavior was analyzed in terms of pore water pressure(PWP),settlement,volume of drainage water,and residual water content.The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation.In addition,constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition.The final stable PWP on the column floor was not sensitive to cement addition.The final settlement of uncemented tailings slurry was independent of drainage conditions,and that of cemented tailings slurry decreased with the increase in cement addition.Notably,more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation.展开更多
In the cemented paste backfill(CPB)method,which can also be used for fortification purposes in mines,different additive materials with pozzolanic properties can be employed as substitutes instead of cement that is the...In the cemented paste backfill(CPB)method,which can also be used for fortification purposes in mines,different additive materials with pozzolanic properties can be employed as substitutes instead of cement that is the main binder.One of the most popular pozzolanic materials that can be employed instead of cement is fly ash,which is thermal power plant tailings.But the compositions of fly ash and tailings used in high amounts in the CPB method,as well as the chemical structures that these materials form by interacting with the cement binder,affect the mechanical properties of the material depending on time.In this study,fly ash with 4 different chemical compositions(TFA,SFA,YFA,and CFA)was used as a cement substitute in CPB.By substituting fly ash with different chemical compositions in different proportions,CPB samples were created and their strength was elucidated according to 28,56,and 90-day curing times.The results of the study revealed that TFA with the highest CaO/SiO_(2) and SO_(3) ratios remained stable at the strength values of 6 MPa(total 9% binder)and 10 MPa(total 11% binder)in the long term.However,CFA with the lowest CaO/SiO_(2),SO_(3),and the highest SiO_(2)+Al_(2)O_(3)+Fe_(2)O_(3) ratios resulted in the greatest strength increase at a 20%substitution rate(11% of the total binder).Nevertheless,it was found that the SFA,which is in Class F,increased its strength in the early period based on the CaO rate.展开更多
Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of therm...Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of thermal accumulation time, slurry proportions and temperature conditions on the thermal accumulation of backfill are analyzed, the influence of the heat conduction between backfill and surrounding rock, the heat convection between backfill and airflow on thermal accumulation were compared simultaneously. The results show that the total thermal accumulation capacity increases by approximately 85% within 10-90 d. The influence of surrounding rock temperature and initial temperature on total thermal accumulation capacity is more significant and it is approximately 2 times of the influence of slurry proportions under the conditions of this study. It is clear that the rise of surrounding rock temperature and the decrease of initial temperature can improve the thermal accumulation capacity more effectively. Moreover, the heat conduction accounts for a considerable proportion in the process of thermal accumulation, the average heat conduction capacity is approximately 25 times of the heat convection capacity. This study can provide the theoretical basis and application reference for the optimization of thermal accumulation process of CTB in the exploitation of geothermal resources.展开更多
This paper elaborates on the development of paste backfill using mill tailings generated during the processing of a uranium ore deposit hosted in dolomitic limestone. The tailings have been characterized in terms of t...This paper elaborates on the development of paste backfill using mill tailings generated during the processing of a uranium ore deposit hosted in dolomitic limestone. The tailings have been characterized in terms of the physical, chemical and mineralogical properties. Time-dependent rheological behaviors and geotechnical properties of cemented paste backfill(CPB) are also determined. The studies show that the mill tailing has the potential to form paste and the CPB has adequate strength to provide support to mine pillars, roofs, and walls.展开更多
Cemented paste backfill(CPB)is extensively used for underground mine support and/or tailings management.However,CPB behavior under cyclic loadings might be affected by the chemistry of its porewater,which often contai...Cemented paste backfill(CPB)is extensively used for underground mine support and/or tailings management.However,CPB behavior under cyclic loadings might be affected by the chemistry of its porewater,which often contains sulphate ions.Till today,no studies have addressed the effect of sulphate on the response of CPB to cyclic loadings by using shaking table technique.This study presents new findings of assessing the effect of the sulphate in the pore water of CPB on its geotechnical response to cyclic loading by using shaking table.CPB mixtures were prepared(with and without sulphate),poured into a flexible laminar shear box,cured to 4 h,and then exposed to cyclic loading using one-dimensional(1D)shaking table.Several parameters(e.g.pore water pressure,settlement,lateral deformation,acceleration,electrical conductivity,effective stress,and liquefaction susceptibility)were monitored or determined before,during,and after shaking.Obtained results indicate that the sulphate-bearing CPB cured to 4 h can be prone to liquefaction under the studied conditions.However,sulphate-free CPB samples are resistant to liquefaction.These results are expected to contribute to a better understanding of the effect of water chemistry on the cyclic behavior of CPB,consequently enhancing the cost-effective design of CPB structures.展开更多
To reduce or eliminate environmental damage during mining processes,green mining practices have emerged as a focal point in China's metal mining research.Cemented paste backfll technology plays a pivotal role in p...To reduce or eliminate environmental damage during mining processes,green mining practices have emerged as a focal point in China's metal mining research.Cemented paste backfll technology plays a pivotal role in promoting green mining within the metal industry.The technology allows safely backflling of surface tailings into underground mining airspaces,effectively addressing the challenges associated with tailings storage and underground goaves.In this paper,we introduce the paste rheology theory system,which forms the theoretical backbone of cemented paste backfll.We delve into key technologies such as paste thickening,mixing,transportation,and the use of economical,low-carbon materials.Additionally,we analyze macro and micromechanical properties,in-situ performance monitoring,barricade construction,intelligent control,and numerical simulations of the process.We establish several demonstration projects,both domestic and international,that utilize cemented paste backfill technology to foster greener mining practices.Cemented paste backfill technology is widely used all over the world.It has evolved from its initial stages to being recognized as an advanced application by various ministries and commissions:Ultimately,we propose future research directions for cemented paste backfill technology in the context of eco-friendly metal mining.These perspectives encompass theory,technology,equipment,and mode,which can strongly contribute to the sustainability of the mining industry in China.展开更多
Rapid flocculation and settlement(FS)of mine tailings is significant for the improvement and development of the filling process,whereas the settlement velocity(SV)of tailings in FS has been recognized as a key paramet...Rapid flocculation and settlement(FS)of mine tailings is significant for the improvement and development of the filling process,whereas the settlement velocity(SV)of tailings in FS has been recognized as a key parameter to evaluate the settlement effect.However,the influence of temperature on the SV and its mechanism have not been studied.FS experiments on tailings with various ambient temperatures were carried out.The SVs of tailings with a solid waste content of 10wt%and an anionic polyacrylamide content of 20 g·t^−1 were measured at different temperatures.The SV presented an“N”-shaped variation curve as the temperature changed from 5 to 40℃.The mechanism of these results can be explained from the perspective of the electric double-layer repulsive force,molecular dynamics,and the polymer flocculation principle,as revealed from the scanning electron microscopy of floc particles.The findings will be beneficial in the design of tailings dewatering processes and save costs in the production of cemented paste backfill.展开更多
Cemented paste backfill(CPB)is one of the effective methods for resource utilization of tailings,but the high cost of ordinary Portland cement(OPC)limits its utilization.Considering the poor performance of Na_(2)CO_(3...Cemented paste backfill(CPB)is one of the effective methods for resource utilization of tailings,but the high cost of ordinary Portland cement(OPC)limits its utilization.Considering the poor performance of Na_(2)CO_(3)-activated binders,in this work,supplementary materials,including CaO,MgO,and calcined layered double hydroxide(CLDH),were used to modify their properties with the aim of finding an alternative binder to OPC.Isothermal calorimetry,X-ray diffraction,and thermogravimetric analyses were conducted to explore the reaction kinetics and phase assembles of the binder.The properties of the CPB samples,such as flowability,strength development,and heavy metal immobilization effects,were then investigated.The results show that the coupling utilization of MgO and CLDH showed good performance.The strength of the Mg_(2)-CLDH_(3) sample was approximately 2.94 MPa after curing for 56 d,which was higher than that of the OPC-based sample.Moreover the cost of the modified Na_(2)CO_(3)-activated binder was lower than that of the OPC-based binder.Modified sample showed satisfactory heavy metal immobilization effects.These findings demonstrate that carbonate-activated binder modified by supplementary materials can be suitable in CPB.展开更多
The understanding of compressive and tensile behaviors of polypropylene fiber-reinforced cemented paste backfill(FR-CPB)play crucial roles in the successful implementation of reinforcement technique in underground min...The understanding of compressive and tensile behaviors of polypropylene fiber-reinforced cemented paste backfill(FR-CPB)play crucial roles in the successful implementation of reinforcement technique in underground mine backfilling operations.However,very limited studies have been performed to gain insight into the evolution of compressive and tensile behaviors and associated mechanical properties of FR-CPB under various curing temperatures from early to advanced ages.Thus,this study aims to investigate the time(7,28,and 90 d)-and temperature(20°C,35°C,and 45°C)-dependence of constitutive behavior and mechanical properties of FR-CPB.The obtained results show that pre-and post-failure behaviors of FR-CPB demonstrate strongly curing temperature-dependence from early to advanced ages.Moreover,the pseudo-hardening behavior is sensitive to curing temperature,especially at early ages.Furthermore,the mechanical properties including elastic modulus,material stiffness,strengths,brittleness,cohesion,and internal friction angle of FR-CPB show increasing trends with curing temperature as curing time elapses.Additionally,a predictive model is developed to capture the strong correlation between compressive and tensile strength of FR-CPB.The findings of this study will contribute to the successful implementation of FR-CPB technology.展开更多
为研究采矿扰动下灰砂比对全尾胶结充填体力学响应,预制了三组不同灰砂比的全尾砂胶结充填体试件,利用ф50 mm SHPB试验系统,对预制试件进行单轴冲击试验,试验结果证明:全尾砂胶结充填体对弹性波传播有较强的反射和阻尼作用;在较高应变...为研究采矿扰动下灰砂比对全尾胶结充填体力学响应,预制了三组不同灰砂比的全尾砂胶结充填体试件,利用ф50 mm SHPB试验系统,对预制试件进行单轴冲击试验,试验结果证明:全尾砂胶结充填体对弹性波传播有较强的反射和阻尼作用;在较高应变率下,试件强度则表现出快速软化;软化试件在18μs左右即达到峰值应力;试件动态抗压强度等参数变比均随应变率的增加而增大.灰砂比越高,试件的极限动态抗压强度等参数越大;在相同应变率下,试件的动态抗压强度等参数的增加反而降低.试件的破坏形式为压碎破坏,在相同应变率作用下,水泥含量越少,试件的破坏程度越高.展开更多
基金the Natural Sciences and Engineering Research Council of Canada (NSERC)the University of Ottawa
文摘In this study, a pressure cell apparatus is developed to investigate the early age evolution of the strength and deformation behaviour of cemented paste backfill(CPB) when subjected to various loading conditions under different curing scenarios. The different curing scenarios that are simulated include:(1)drained and undrained conditions,(2) different filling rates,(3) different filling sequences, and(4) different curing stresses. The findings show that drainage, curing stress, curing time and filling rate influence the mechanical and deformation behaviours of CPB materials. The coupled effects of consolidation, drainage and suction contribute to the strength development of drained CPB subjected to curing stress. On the other hand, particle rearrangement caused by the applied pressure and suction development due to self-desiccation plays a significant role in the strength gain of undrained CPB cured under stress.Furthermore, curing stress induces slightly faster rate of cement hydration, which can contribute to strength acquisition.
基金the Natural Sciences and Engineering Research Council of Canada(NSERC)Institut de recherche Robert-Sauve en sante et en securite du travail(IRSST)industrial partners of the Research Institute on Mines and the Environment(RIME UQAT-Polytechnique)
文摘Cemented paste backfill(CPB) is largely used in underground mines worldwide.A key issue associated with application of CPB is to estimate the stresses in backfilled stopes and on barricades.Recent numerical and experimental results show that arching effect is absent shortly after the placement of CPB in stopes.However,stress decreases in barricade drift with increasing distance between the measurement points and drawpoint have also been observed,demonstrating arching effect shortly after the pouring of CPB.To explain these paradoxes,CPB is considered as Bingham fluid having a yield shear stress.Three dimensional analytical solutions are proposed to evaluate the short-term total stresses in backfilled stopes and on barricades,accounting for the CPB's yield shear stress-induced arching effect.Stress diminution due to such arching effect in the backfilled stopes and on barricades is indeed obtained.But the reduction becomes insignificant using typical yield shear stress and stope geometry.More analyses indicate that the typical yield shear stress values do not fully correspond to field conditions where the yield shear stress would increase exponentially due to apparent consolidation(loss of water by drainage,a phenomenon similar to the desiccation of overly saturated fine-grained materials).
基金supported by the National Key R&D Program of China(No.2017YFC0602902)the National Natural Scienceof China(Nos.41807259 and 51874350)+2 种基金the Fundamental Research Funds for the Central Universities of Central South University(No.2016zztx096)The support provided by the China Scholarship Council(CSC)during the visit of the first author toécole Polytechnique de Montréal(Student ID:201706370039)the materials supply by Fan Kou lead-zinc mine of Shenzhen Zhongjin Lingnan Non-ferrous metal Company Limited。
文摘The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinson pressure bar(SHPB)was utilized to investigate the high strain rate compressive behavior of CPB with dynamic loads of 0.4,0.8,and 1.2 MPa.And the failure modes were determined by macro and micro analysis.CPB with different cement-to-tailings ratios,solid mass concentrations,and curing ages was prepared to conduct the SHPB test.The results showed that increasing the cement content,tailings content,and curing age can improve the dynamic compressive strength and elastic modulus.Under an impact load,a higher strain rate can lead to larger increasing times of the dynamic compressive strength when compared with static loading.And the dynamic compressive strength of CPB has an exponential correlation with the strain rate.The macroscopic failure modes indicated that CPB is more seriously damaged under dynamic loading.The local damage was enhanced,and fine cracks were formed in the interior of the CPB.This is because the CPB cannot dissipate the energy of the high strain rate stress wave in a short loading period.
基金financially supported by the Young Scientist Project of the National Key Research and Development Program of China (No.2021YFC2900600)the Beijing Nova Program (No.20220484057)financial support from China Scholarship Council under Grant CSC No.202110300001。
文摘Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes,where many factors can have significant effects on the consolidation,including drainage condition and cement addition.In this paper,the prepared tailings slurry with different cement contents(0,4.76wt%,and 6.25wt%)was poured into1.2 m-high columns,which allowed three drainage scenarios(undrained,partial lateral drainage near the bottom part,and full lateral drainage boundaries)to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry.The consolidation behavior was analyzed in terms of pore water pressure(PWP),settlement,volume of drainage water,and residual water content.The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation.In addition,constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition.The final stable PWP on the column floor was not sensitive to cement addition.The final settlement of uncemented tailings slurry was independent of drainage conditions,and that of cemented tailings slurry decreased with the increase in cement addition.Notably,more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation.
文摘In the cemented paste backfill(CPB)method,which can also be used for fortification purposes in mines,different additive materials with pozzolanic properties can be employed as substitutes instead of cement that is the main binder.One of the most popular pozzolanic materials that can be employed instead of cement is fly ash,which is thermal power plant tailings.But the compositions of fly ash and tailings used in high amounts in the CPB method,as well as the chemical structures that these materials form by interacting with the cement binder,affect the mechanical properties of the material depending on time.In this study,fly ash with 4 different chemical compositions(TFA,SFA,YFA,and CFA)was used as a cement substitute in CPB.By substituting fly ash with different chemical compositions in different proportions,CPB samples were created and their strength was elucidated according to 28,56,and 90-day curing times.The results of the study revealed that TFA with the highest CaO/SiO_(2) and SO_(3) ratios remained stable at the strength values of 6 MPa(total 9% binder)and 10 MPa(total 11% binder)in the long term.However,CFA with the lowest CaO/SiO_(2),SO_(3),and the highest SiO_(2)+Al_(2)O_(3)+Fe_(2)O_(3) ratios resulted in the greatest strength increase at a 20%substitution rate(11% of the total binder).Nevertheless,it was found that the SFA,which is in Class F,increased its strength in the early period based on the CaO rate.
基金Projects(51974225,51674188,51874229,51904224,51904225,51704229)supported by the National Natural Science Foundation of ChinaProject(2018KJXX-083)supported by the Shaanxi Innovative Talents Cultivate Program-New-Star Plan of Science and Technology,China+2 种基金Projects(2018JM5161,2018JQ5183,2015JM-074)supported by the Natural Science Basic Research Plan of Shaanxi Province,ChinaProject(19JK0543)supported by the Scientific Research Program funded by Education Department of Shaanxi Province,ChinaProject(2018YQ201)supported by the Outstanding Youth Science Fund of Xi’an University of Science and Technology,China。
文摘Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of thermal accumulation time, slurry proportions and temperature conditions on the thermal accumulation of backfill are analyzed, the influence of the heat conduction between backfill and surrounding rock, the heat convection between backfill and airflow on thermal accumulation were compared simultaneously. The results show that the total thermal accumulation capacity increases by approximately 85% within 10-90 d. The influence of surrounding rock temperature and initial temperature on total thermal accumulation capacity is more significant and it is approximately 2 times of the influence of slurry proportions under the conditions of this study. It is clear that the rise of surrounding rock temperature and the decrease of initial temperature can improve the thermal accumulation capacity more effectively. Moreover, the heat conduction accounts for a considerable proportion in the process of thermal accumulation, the average heat conduction capacity is approximately 25 times of the heat convection capacity. This study can provide the theoretical basis and application reference for the optimization of thermal accumulation process of CTB in the exploitation of geothermal resources.
基金the Department of Atomic Energy (DAE),Government of India,for providing financial assistance (BARC/IFB/IITKHARAGPUR/295, Dt.18-03-2013) during this research work
文摘This paper elaborates on the development of paste backfill using mill tailings generated during the processing of a uranium ore deposit hosted in dolomitic limestone. The tailings have been characterized in terms of the physical, chemical and mineralogical properties. Time-dependent rheological behaviors and geotechnical properties of cemented paste backfill(CPB) are also determined. The studies show that the mill tailing has the potential to form paste and the CPB has adequate strength to provide support to mine pillars, roofs, and walls.
基金The authors would like to thank the National Natural Sciences and Engineering Research Council of Canada(NSERC)for financially supporting this project
文摘Cemented paste backfill(CPB)is extensively used for underground mine support and/or tailings management.However,CPB behavior under cyclic loadings might be affected by the chemistry of its porewater,which often contains sulphate ions.Till today,no studies have addressed the effect of sulphate on the response of CPB to cyclic loadings by using shaking table technique.This study presents new findings of assessing the effect of the sulphate in the pore water of CPB on its geotechnical response to cyclic loading by using shaking table.CPB mixtures were prepared(with and without sulphate),poured into a flexible laminar shear box,cured to 4 h,and then exposed to cyclic loading using one-dimensional(1D)shaking table.Several parameters(e.g.pore water pressure,settlement,lateral deformation,acceleration,electrical conductivity,effective stress,and liquefaction susceptibility)were monitored or determined before,during,and after shaking.Obtained results indicate that the sulphate-bearing CPB cured to 4 h can be prone to liquefaction under the studied conditions.However,sulphate-free CPB samples are resistant to liquefaction.These results are expected to contribute to a better understanding of the effect of water chemistry on the cyclic behavior of CPB,consequently enhancing the cost-effective design of CPB structures.
基金supported by the National Natural Science Foundation of China (No.52130404)the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities),China (No.FRF-IDRY-GD22-004).
文摘To reduce or eliminate environmental damage during mining processes,green mining practices have emerged as a focal point in China's metal mining research.Cemented paste backfll technology plays a pivotal role in promoting green mining within the metal industry.The technology allows safely backflling of surface tailings into underground mining airspaces,effectively addressing the challenges associated with tailings storage and underground goaves.In this paper,we introduce the paste rheology theory system,which forms the theoretical backbone of cemented paste backfll.We delve into key technologies such as paste thickening,mixing,transportation,and the use of economical,low-carbon materials.Additionally,we analyze macro and micromechanical properties,in-situ performance monitoring,barricade construction,intelligent control,and numerical simulations of the process.We establish several demonstration projects,both domestic and international,that utilize cemented paste backfill technology to foster greener mining practices.Cemented paste backfill technology is widely used all over the world.It has evolved from its initial stages to being recognized as an advanced application by various ministries and commissions:Ultimately,we propose future research directions for cemented paste backfill technology in the context of eco-friendly metal mining.These perspectives encompass theory,technology,equipment,and mode,which can strongly contribute to the sustainability of the mining industry in China.
基金This work was financially supported by the State Key Laboratory of Safety and Health for Metal Mines,China(No.2019-JSKSSYS-02)the Natural Science Foundation of Hunan Province,China(No.2020JJ5718).
文摘Rapid flocculation and settlement(FS)of mine tailings is significant for the improvement and development of the filling process,whereas the settlement velocity(SV)of tailings in FS has been recognized as a key parameter to evaluate the settlement effect.However,the influence of temperature on the SV and its mechanism have not been studied.FS experiments on tailings with various ambient temperatures were carried out.The SVs of tailings with a solid waste content of 10wt%and an anionic polyacrylamide content of 20 g·t^−1 were measured at different temperatures.The SV presented an“N”-shaped variation curve as the temperature changed from 5 to 40℃.The mechanism of these results can be explained from the perspective of the electric double-layer repulsive force,molecular dynamics,and the polymer flocculation principle,as revealed from the scanning electron microscopy of floc particles.The findings will be beneficial in the design of tailings dewatering processes and save costs in the production of cemented paste backfill.
基金financially supported by the Key Laboratory of the Ministry of Education on Safe Mining of Deep Metal Mines,Northeastern University (No.2017SMDM-KFA01)the Fundamental Research Funds for the Central Universities (No.N2101043)。
文摘Cemented paste backfill(CPB)is one of the effective methods for resource utilization of tailings,but the high cost of ordinary Portland cement(OPC)limits its utilization.Considering the poor performance of Na_(2)CO_(3)-activated binders,in this work,supplementary materials,including CaO,MgO,and calcined layered double hydroxide(CLDH),were used to modify their properties with the aim of finding an alternative binder to OPC.Isothermal calorimetry,X-ray diffraction,and thermogravimetric analyses were conducted to explore the reaction kinetics and phase assembles of the binder.The properties of the CPB samples,such as flowability,strength development,and heavy metal immobilization effects,were then investigated.The results show that the coupling utilization of MgO and CLDH showed good performance.The strength of the Mg_(2)-CLDH_(3) sample was approximately 2.94 MPa after curing for 56 d,which was higher than that of the OPC-based sample.Moreover the cost of the modified Na_(2)CO_(3)-activated binder was lower than that of the OPC-based binder.Modified sample showed satisfactory heavy metal immobilization effects.These findings demonstrate that carbonate-activated binder modified by supplementary materials can be suitable in CPB.
基金The authors would like to thank the Natural Sciences and Engineering Research Council of Canada(NSERC)for the financial support of this research.
文摘The understanding of compressive and tensile behaviors of polypropylene fiber-reinforced cemented paste backfill(FR-CPB)play crucial roles in the successful implementation of reinforcement technique in underground mine backfilling operations.However,very limited studies have been performed to gain insight into the evolution of compressive and tensile behaviors and associated mechanical properties of FR-CPB under various curing temperatures from early to advanced ages.Thus,this study aims to investigate the time(7,28,and 90 d)-and temperature(20°C,35°C,and 45°C)-dependence of constitutive behavior and mechanical properties of FR-CPB.The obtained results show that pre-and post-failure behaviors of FR-CPB demonstrate strongly curing temperature-dependence from early to advanced ages.Moreover,the pseudo-hardening behavior is sensitive to curing temperature,especially at early ages.Furthermore,the mechanical properties including elastic modulus,material stiffness,strengths,brittleness,cohesion,and internal friction angle of FR-CPB show increasing trends with curing temperature as curing time elapses.Additionally,a predictive model is developed to capture the strong correlation between compressive and tensile strength of FR-CPB.The findings of this study will contribute to the successful implementation of FR-CPB technology.
文摘为研究采矿扰动下灰砂比对全尾胶结充填体力学响应,预制了三组不同灰砂比的全尾砂胶结充填体试件,利用ф50 mm SHPB试验系统,对预制试件进行单轴冲击试验,试验结果证明:全尾砂胶结充填体对弹性波传播有较强的反射和阻尼作用;在较高应变率下,试件强度则表现出快速软化;软化试件在18μs左右即达到峰值应力;试件动态抗压强度等参数变比均随应变率的增加而增大.灰砂比越高,试件的极限动态抗压强度等参数越大;在相同应变率下,试件的动态抗压强度等参数的增加反而降低.试件的破坏形式为压碎破坏,在相同应变率作用下,水泥含量越少,试件的破坏程度越高.