To preserve the edges and details of the image,a new variational model for wavelet domain inpainting was proposed which contained a non-convex regularizer. The non-convex regularizer can utilize the local information ...To preserve the edges and details of the image,a new variational model for wavelet domain inpainting was proposed which contained a non-convex regularizer. The non-convex regularizer can utilize the local information of image and perform better than those usual convex ones. In addition, to solve the non-convex minimization problem,an iterative reweighted method and a primaldual method were designed. The numerical experiments show that the new model not only gets better visual effects but also obtains higher signal to noise ratio than the recent method.展开更多
We consider the problem of restoring images corrupted by Poisson noise. Under the framework of maximum a posteriori estimator, the problem can be converted into a minimization problem where the objective function is c...We consider the problem of restoring images corrupted by Poisson noise. Under the framework of maximum a posteriori estimator, the problem can be converted into a minimization problem where the objective function is composed of a Kullback-Leibler(KL)-divergence term for the Poisson noise and a total variation(TV) regularization term. Due to the logarithm function in the KL-divergence term, the non-differentiability of TV term and the positivity constraint on the images, it is not easy to design stable and efficiency algorithm for the problem. Recently, many researchers proposed to solve the problem by alternating direction method of multipliers(ADMM). Since the approach introduces some auxiliary variables and requires the solution of some linear systems, the iterative procedure can be complicated. Here we formulate the problem as two new constrained minimax problems and solve them by Chambolle-Pock's first order primal-dual approach. The convergence of our approach is guaranteed by their theory. Comparing with ADMM approaches, our approach requires about half of the auxiliary variables and is matrix-inversion free. Numerical results show that our proposed algorithms are efficient and outperform the ADMM approach.展开更多
We propose a new two-phase method for reconstruction of blurred im-ages corrupted by impulse noise.In the first phase,we use a noise detector to iden-tify the pixels that are contaminated by noise,and then,in the seco...We propose a new two-phase method for reconstruction of blurred im-ages corrupted by impulse noise.In the first phase,we use a noise detector to iden-tify the pixels that are contaminated by noise,and then,in the second phase,we reconstruct the noisy pixels by solving an equality constrained total variation mini-mization problem that preserves the exact values of the noise-free pixels.For images that are only corrupted by impulse noise(i.e.,not blurred)we apply the semismooth Newton’s method to a reduced problem,and if the images are also blurred,we solve the equality constrained reconstruction problem using a first-order primal-dual algo-rithm.The proposed model improves the computational efficiency(in the denoising case)and has the advantage of being regularization parameter-free.Our numerical results suggest that the method is competitive in terms of its restoration capabilities with respect to the other two-phase methods.展开更多
基金National Natural Science Foundations of China(Nos.61301229,61101208)Doctoral Research Funds of Henan University of Science and Technology,China(Nos.09001708,09001751)
文摘To preserve the edges and details of the image,a new variational model for wavelet domain inpainting was proposed which contained a non-convex regularizer. The non-convex regularizer can utilize the local information of image and perform better than those usual convex ones. In addition, to solve the non-convex minimization problem,an iterative reweighted method and a primaldual method were designed. The numerical experiments show that the new model not only gets better visual effects but also obtains higher signal to noise ratio than the recent method.
基金supported by National Natural Science Foundation of China(Grant Nos.1136103011271049 and 11271049)+5 种基金the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry(Grant Nos.CUHK400412HKBU502814211911and 12302714)Hong Kong Research Grants Council(Grant No.Ao E/M-05/12)FRGs of Hong Kong Baptist University
文摘We consider the problem of restoring images corrupted by Poisson noise. Under the framework of maximum a posteriori estimator, the problem can be converted into a minimization problem where the objective function is composed of a Kullback-Leibler(KL)-divergence term for the Poisson noise and a total variation(TV) regularization term. Due to the logarithm function in the KL-divergence term, the non-differentiability of TV term and the positivity constraint on the images, it is not easy to design stable and efficiency algorithm for the problem. Recently, many researchers proposed to solve the problem by alternating direction method of multipliers(ADMM). Since the approach introduces some auxiliary variables and requires the solution of some linear systems, the iterative procedure can be complicated. Here we formulate the problem as two new constrained minimax problems and solve them by Chambolle-Pock's first order primal-dual approach. The convergence of our approach is guaranteed by their theory. Comparing with ADMM approaches, our approach requires about half of the auxiliary variables and is matrix-inversion free. Numerical results show that our proposed algorithms are efficient and outperform the ADMM approach.
基金The work of Y.Dong is supported by Advanced Grant No.291405 from the European Research Council.
文摘We propose a new two-phase method for reconstruction of blurred im-ages corrupted by impulse noise.In the first phase,we use a noise detector to iden-tify the pixels that are contaminated by noise,and then,in the second phase,we reconstruct the noisy pixels by solving an equality constrained total variation mini-mization problem that preserves the exact values of the noise-free pixels.For images that are only corrupted by impulse noise(i.e.,not blurred)we apply the semismooth Newton’s method to a reduced problem,and if the images are also blurred,we solve the equality constrained reconstruction problem using a first-order primal-dual algo-rithm.The proposed model improves the computational efficiency(in the denoising case)and has the advantage of being regularization parameter-free.Our numerical results suggest that the method is competitive in terms of its restoration capabilities with respect to the other two-phase methods.