The importance of the aircraft is increasing gradually;among them it may be called Ground Control Station (GCS) receiving the highest expectations. In aspect of operation, operator’s workload and working speed are on...The importance of the aircraft is increasing gradually;among them it may be called Ground Control Station (GCS) receiving the highest expectations. In aspect of operation, operator’s workload and working speed are one of the most important factors. Thus, we need to compare Touch mode and Non Touch mode in order to improve workload and working speed. In this paper, we analyzed the differences of Touch mode and Non Touch mode about workload, working speed in operation of aircraft. Through NASA-TLX and Measured working time, quantified data were collected and an analysis of variance (ANOVA) was performed. According to experimental result, working speed and workload according to input mode showed significant difference. In ground operation, Touch mode is better than Non Touch mode about working speed and workload. In the Touch mode, the optimal value of lower display angle was selected as 60。 angle.展开更多
An investigation into the optimal design of a substation grounding system for the transmission substation in Gaza City, Palestine has been carried out. A research into the most influential parameters on the effectiven...An investigation into the optimal design of a substation grounding system for the transmission substation in Gaza City, Palestine has been carried out. A research into the most influential parameters on the effectiveness of the substation grid system has been performed and its results have been incorporated into the Gaza case study. Through modelling and simulating the power station in Gaza while considering some field data, an optimal substation grounding grid has been designed and has shown complete conformance to safety. It is thus considered that such a design will protect personnel in any area of the substation in addition to the installed machinery if the largest possible fault current was to traverse the earth.展开更多
A new model considering corrosion property for grounding grids diagnosis is proposed,which provides reference solutions of ambiguous branches.The constraint total least square method based on singular value decomposit...A new model considering corrosion property for grounding grids diagnosis is proposed,which provides reference solutions of ambiguous branches.The constraint total least square method based on singular value decomposition is adopted to improve the effectiveness of grounding grids' diagnosis algorithm.The improvement can weaken the influence of the model's error,which results from the differences between design paper and actual grid.Its influence on touch and step voltages caused by the interior resistance of conductors is taken into account.Simulation results show the validity of this approach.展开更多
This paper examines various aspects of the design process and subsequent field test measurements of a large and complex substation grounding system. The study and measurements show that soil layering and lead interfer...This paper examines various aspects of the design process and subsequent field test measurements of a large and complex substation grounding system. The study and measurements show that soil layering and lead interference can have a significant impact on the appropriate test location that yields the exact substation ground impedance. Applying a specific percentage rule such as the 61.8% rule for uniform soils to obtain the true ground impedance may lead to unacceptable errors for large grounding systems. This poses significant problems when attempting to validate a design based on raw test data that are interpreted using approximate methods to evaluate substation ground impedance, and determine ground potential rise (GPR), touch and step voltages. Advanced measurement methodologies and modern software packages were used to obtain and effectively analyze fall of potential test data, compute fault current distribution, and evaluate touch and step voltages for this large substation. Fault current distribution between the grounding system and other metallic paths were computed to determine the portion of fault current discharged in the grounding system. The performance of the grounding system, including its GPR and touch and step voltages, has been accurately computed and measured, taking into account the impedance of the steel material used of the ground conductors and circulating currents within the substation grounding system.展开更多
文摘The importance of the aircraft is increasing gradually;among them it may be called Ground Control Station (GCS) receiving the highest expectations. In aspect of operation, operator’s workload and working speed are one of the most important factors. Thus, we need to compare Touch mode and Non Touch mode in order to improve workload and working speed. In this paper, we analyzed the differences of Touch mode and Non Touch mode about workload, working speed in operation of aircraft. Through NASA-TLX and Measured working time, quantified data were collected and an analysis of variance (ANOVA) was performed. According to experimental result, working speed and workload according to input mode showed significant difference. In ground operation, Touch mode is better than Non Touch mode about working speed and workload. In the Touch mode, the optimal value of lower display angle was selected as 60。 angle.
文摘An investigation into the optimal design of a substation grounding system for the transmission substation in Gaza City, Palestine has been carried out. A research into the most influential parameters on the effectiveness of the substation grid system has been performed and its results have been incorporated into the Gaza case study. Through modelling and simulating the power station in Gaza while considering some field data, an optimal substation grounding grid has been designed and has shown complete conformance to safety. It is thus considered that such a design will protect personnel in any area of the substation in addition to the installed machinery if the largest possible fault current was to traverse the earth.
文摘A new model considering corrosion property for grounding grids diagnosis is proposed,which provides reference solutions of ambiguous branches.The constraint total least square method based on singular value decomposition is adopted to improve the effectiveness of grounding grids' diagnosis algorithm.The improvement can weaken the influence of the model's error,which results from the differences between design paper and actual grid.Its influence on touch and step voltages caused by the interior resistance of conductors is taken into account.Simulation results show the validity of this approach.
文摘This paper examines various aspects of the design process and subsequent field test measurements of a large and complex substation grounding system. The study and measurements show that soil layering and lead interference can have a significant impact on the appropriate test location that yields the exact substation ground impedance. Applying a specific percentage rule such as the 61.8% rule for uniform soils to obtain the true ground impedance may lead to unacceptable errors for large grounding systems. This poses significant problems when attempting to validate a design based on raw test data that are interpreted using approximate methods to evaluate substation ground impedance, and determine ground potential rise (GPR), touch and step voltages. Advanced measurement methodologies and modern software packages were used to obtain and effectively analyze fall of potential test data, compute fault current distribution, and evaluate touch and step voltages for this large substation. Fault current distribution between the grounding system and other metallic paths were computed to determine the portion of fault current discharged in the grounding system. The performance of the grounding system, including its GPR and touch and step voltages, has been accurately computed and measured, taking into account the impedance of the steel material used of the ground conductors and circulating currents within the substation grounding system.